Go: cmd/compile/internal/gc Index | Files

package gc

import "cmd/compile/internal/gc"


Package Files

alg.go algkind_string.go align.go bexport.go bimport.go bitset.go builtin.go bv.go class_string.go closure.go const.go dcl.go dump.go dwinl.go esc.go escape.go export.go fmt.go gen.go go.go gsubr.go iexport.go iimport.go init.go initorder.go inl.go lex.go main.go mapfile_mmap.go mpfloat.go mpint.go noder.go obj.go op_string.go order.go pgen.go phi.go plive.go pprof.go racewalk.go range.go reflect.go scc.go scope.go select.go sinit.go ssa.go subr.go swt.go syntax.go timings.go trace.go typecheck.go types.go types_acc.go universe.go unsafe.go util.go walk.go


const (
    H0  = 2166136261
    Hp  = 16777619

FNV-1 hash function constants.

const (
    EscFuncUnknown = 0 + iota
const (
    EscUnknown = iota
    EscNone    // Does not escape to heap, result, or parameters.
    EscHeap    // Reachable from the heap
    EscNever   // By construction will not escape.
const (
    FErr fmtMode = iota
    FTypeIdName // same as FTypeId, but use package name instead of prefix

*types.Sym, *types.Type, and *Node types use the flags below to set the format mode

const (
    InitNotStarted = iota

Static initialization phase. These values are stored in two bits in Node.flags.

const (
    FuncPragmas = Nointerface |
        Noescape |
        Norace |
        Nosplit |
        Noinline |
        NoCheckPtr |
        CgoUnsafeArgs |
        UintptrEscapes |
        Systemstack |
        Nowritebarrier |
        Nowritebarrierrec |

    TypePragmas = NotInHeap
const (
    // Maximum size in bits for Mpints before signalling
    // overflow and also mantissa precision for Mpflts.
    Mpprec = 512
    // Turn on for constant arithmetic debugging output.
    Mpdebug = false
const (
    MAXKEYSIZE  = 128

Builds a type representing a Bucket structure for the given map type. This type is not visible to users - we include only enough information to generate a correct GC program for it. Make sure this stays in sync with runtime/map.go.

const (
    Txxx = types.Txxx

    TINT8    = types.TINT8
    TUINT8   = types.TUINT8
    TINT16   = types.TINT16
    TUINT16  = types.TUINT16
    TINT32   = types.TINT32
    TUINT32  = types.TUINT32
    TINT64   = types.TINT64
    TUINT64  = types.TUINT64
    TINT     = types.TINT
    TUINT    = types.TUINT

    TCOMPLEX64  = types.TCOMPLEX64
    TCOMPLEX128 = types.TCOMPLEX128

    TFLOAT32 = types.TFLOAT32
    TFLOAT64 = types.TFLOAT64

    TBOOL = types.TBOOL

    TPTR       = types.TPTR
    TFUNC      = types.TFUNC
    TSLICE     = types.TSLICE
    TARRAY     = types.TARRAY
    TSTRUCT    = types.TSTRUCT
    TCHAN      = types.TCHAN
    TMAP       = types.TMAP
    TINTER     = types.TINTER
    TFORW      = types.TFORW
    TANY       = types.TANY
    TSTRING    = types.TSTRING

    // pseudo-types for literals
    TIDEAL = types.TIDEAL
    TNIL   = types.TNIL
    TBLANK = types.TBLANK

    // pseudo-types for frame layout

    NTYPE = types.NTYPE

convenience constants

const ArhdrSize = 60

architecture-independent object file output

const (
const StackMapDontCare = -1000

StackMapDontCare indicates that the stack map index at a Value doesn't matter.

This is a sentinel value that should never be emitted to the PCDATA stream. We use -1000 because that's obviously never a valid stack index (but -1 is).


var (

    Udiv *obj.LSym

    BoundsCheckFunc [ssa.BoundsKindCount]*obj.LSym
    ExtendCheckFunc [ssa.BoundsKindCount]*obj.LSym

    // GO386=387
    ControlWord32 *obj.LSym

    // Wasm
    SigPanic *obj.LSym
var (
    Debug_append       int
    Debug_checkptr     int
    Debug_closure      int
    Debug_compilelater int

    Debug_libfuzzer    int
    Debug_panic        int
    Debug_slice        int
    Debug_vlog         bool
    Debug_wb           int
    Debug_pctab        string
    Debug_locationlist int
    Debug_typecheckinl int
    Debug_gendwarfinl  int
    Debug_softfloat    int
    Debug_defer        int
var Ctxt *obj.Link
var Debug [256]int
var Debug_checknil int
var (
    Debug_export int // if set, print debugging information about export data
var Debug_gcprog int // set by -d gcprog
var Debug_typeassert int
var GCWriteBarrierReg map[int16]*obj.LSym

GCWriteBarrierReg maps from registers to gcWriteBarrier implementation LSyms.

var LivenessInvalid = LivenessIndex{StackMapDontCare, StackMapDontCare, true} // only for !go115ReduceLiveness

LivenessInvalid indicates an unsafe point with no stack map.

var Runtimepkg *types.Pkg // fake package runtime
var Widthptr int
var Widthreg int

func AddAux Uses

func AddAux(a *obj.Addr, v *ssa.Value)

AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.

func AddAux2 Uses

func AddAux2(a *obj.Addr, v *ssa.Value, offset int64)

func AddrAuto Uses

func AddrAuto(a *obj.Addr, v *ssa.Value)

func Addrconst Uses

func Addrconst(a *obj.Addr, v int64)

func CheckLoweredGetClosurePtr Uses

func CheckLoweredGetClosurePtr(v *ssa.Value)

CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block. The output of LoweredGetClosurePtr is generally hardwired to the correct register. That register contains the closure pointer on closure entry.

func CheckLoweredPhi Uses

func CheckLoweredPhi(v *ssa.Value)

CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. Called during ssaGenValue.

func Dump Uses

func Dump(s string, n *Node)

func EqCanPanic Uses

func EqCanPanic(t *types.Type) bool

EqCanPanic reports whether == on type t could panic (has an interface somewhere). t must be comparable.

func Exit Uses

func Exit(code int)

func Fatalf Uses

func Fatalf(fmt_ string, args ...interface{})

func IncomparableField Uses

func IncomparableField(t *types.Type) *types.Field

IncomparableField returns an incomparable Field of struct Type t, if any.

func IsAlias Uses

func IsAlias(sym *types.Sym) bool

func IsComparable Uses

func IsComparable(t *types.Type) bool

IsComparable reports whether t is a comparable type.

func IsRegularMemory Uses

func IsRegularMemory(t *types.Type) bool

IsRegularMemory reports whether t can be compared/hashed as regular memory.

func Isconst Uses

func Isconst(n *Node, ct Ctype) bool

func Main Uses

func Main(archInit func(*Arch))

Main parses flags and Go source files specified in the command-line arguments, type-checks the parsed Go package, compiles functions to machine code, and finally writes the compiled package definition to disk.

func Patch Uses

func Patch(p *obj.Prog, to *obj.Prog)

func Rnd Uses

func Rnd(o int64, r int64) int64

func Warn Uses

func Warn(fmt_ string, args ...interface{})

func Warnl Uses

func Warnl(line src.XPos, fmt_ string, args ...interface{})

type AlgKind Uses

type AlgKind int

AlgKind describes the kind of algorithms used for comparing and hashing a Type.

const (
    // These values are known by runtime.
    ANOEQ AlgKind = iota

    // Type can be compared/hashed as regular memory.
    AMEM AlgKind = 100

    // Type needs special comparison/hashing functions.
    ASPECIAL AlgKind = -1

func (AlgKind) String Uses

func (i AlgKind) String() string

type Arch Uses

type Arch struct {
    LinkArch *obj.LinkArch

    REGSP     int
    MAXWIDTH  int64
    Use387    bool // should 386 backend use 387 FP instructions instead of sse2.
    SoftFloat bool

    PadFrame func(int64) int64

    // ZeroRange zeroes a range of memory on stack. It is only inserted
    // at function entry, and it is ok to clobber registers.
    ZeroRange func(*Progs, *obj.Prog, int64, int64, *uint32) *obj.Prog

    Ginsnop      func(*Progs) *obj.Prog
    Ginsnopdefer func(*Progs) *obj.Prog // special ginsnop for deferreturn

    // SSAMarkMoves marks any MOVXconst ops that need to avoid clobbering flags.
    SSAMarkMoves func(*SSAGenState, *ssa.Block)

    // SSAGenValue emits Prog(s) for the Value.
    SSAGenValue func(*SSAGenState, *ssa.Value)

    // SSAGenBlock emits end-of-block Progs. SSAGenValue should be called
    // for all values in the block before SSAGenBlock.
    SSAGenBlock func(s *SSAGenState, b, next *ssa.Block)

type BlockEffects Uses

type BlockEffects struct {
    // contains filtered or unexported fields

BlockEffects summarizes the liveness effects on an SSA block.

type Branch Uses

type Branch struct {
    P   *obj.Prog  // branch instruction
    B   *ssa.Block // target

Branch is an unresolved branch.

type Class Uses

type Class uint8

The Class of a variable/function describes the "storage class" of a variable or function. During parsing, storage classes are called declaration contexts.

const (
    Pxxx      Class = iota // no class; used during ssa conversion to indicate pseudo-variables
    PEXTERN                // global variable
    PAUTO                  // local variables
    PAUTOHEAP              // local variable or parameter moved to heap
    PPARAM                 // input arguments
    PPARAMOUT              // output results
    PFUNC                  // global function


go:generate stringer -type=Class

func (Class) String Uses

func (i Class) String() string

type Ctype Uses

type Ctype uint8

Ctype describes the constant kind of an "ideal" (untyped) constant.

const (
    CTxxx Ctype = iota


type Dlist Uses

type Dlist struct {
    // contains filtered or unexported fields

A Dlist stores a pointer to a TFIELD Type embedded within a TSTRUCT or TINTER Type.

type Error Uses

type Error struct {
    // contains filtered or unexported fields

type EscEdge Uses

type EscEdge struct {
    // contains filtered or unexported fields

An EscEdge represents an assignment edge between two Go variables.

type EscHole Uses

type EscHole struct {
    // contains filtered or unexported fields

An EscHole represents a context for evaluation a Go expression. E.g., when evaluating p in "x = **p", we'd have a hole with dst==x and derefs==2.

type EscLeaks Uses

type EscLeaks [1 + numEscResults]uint8

An EscLeaks represents a set of assignment flows from a parameter to the heap or to any of its function's (first numEscResults) result parameters.

func ParseLeaks Uses

func ParseLeaks(s string) EscLeaks

ParseLeaks parses a binary string representing an EscLeaks.

func (*EscLeaks) AddHeap Uses

func (l *EscLeaks) AddHeap(derefs int)

AddHeap adds an assignment flow from l to the heap.

func (*EscLeaks) AddResult Uses

func (l *EscLeaks) AddResult(i, derefs int)

AddResult adds an assignment flow from l to its function's i'th result parameter.

func (EscLeaks) Empty Uses

func (l EscLeaks) Empty() bool

Empty reports whether l is an empty set (i.e., no assignment flows).

func (EscLeaks) Encode Uses

func (l EscLeaks) Encode() string

Encode converts l into a binary string for export data.

func (EscLeaks) Heap Uses

func (l EscLeaks) Heap() int

Heap returns the minimum deref count of any assignment flow from l to the heap. If no such flows exist, Heap returns -1.

func (*EscLeaks) Optimize Uses

func (l *EscLeaks) Optimize()

Optimize removes result flow paths that are equal in length or longer than the shortest heap flow path.

func (EscLeaks) Result Uses

func (l EscLeaks) Result(i int) int

Result returns the minimum deref count of any assignment flow from l to its function's i'th result parameter. If no such flows exist, Result returns -1.

type EscLocation Uses

type EscLocation struct {
    // contains filtered or unexported fields

An EscLocation represents an abstract location that stores a Go variable.

type EscNote Uses

type EscNote struct {
    // contains filtered or unexported fields

type Escape Uses

type Escape struct {
    // contains filtered or unexported fields

type FmtFlag Uses

type FmtFlag int

A FmtFlag value is a set of flags (or 0). They control how the Xconv functions format their values. See the respective function's documentation for details.

const (
    FmtLeft     FmtFlag = 1 << iota // '-'
    FmtSharp                        // '#'
    FmtSign                         // '+'
    FmtUnsigned                     // internal use only (historic: u flag)
    FmtShort                        // verb == 'S'       (historic: h flag)
    FmtLong                         // verb == 'L'       (historic: l flag)
    FmtComma                        // '.' (== hasPrec)  (historic: , flag)
    FmtByte                         // '0'               (historic: hh flag)

type Func Uses

type Func struct {
    Shortname *types.Sym
    Enter     Nodes // for example, allocate and initialize memory for escaping parameters
    Exit      Nodes
    Cvars     Nodes   // closure params
    Dcl       []*Node // autodcl for this func/closure

    // Parents records the parent scope of each scope within a
    // function. The root scope (0) has no parent, so the i'th
    // scope's parent is stored at Parents[i-1].
    Parents []ScopeID

    // Marks records scope boundary changes.
    Marks []Mark

    // Closgen tracks how many closures have been generated within
    // this function. Used by closurename for creating unique
    // function names.
    Closgen int

    FieldTrack map[*types.Sym]struct{}
    DebugInfo  *ssa.FuncDebug
    Ntype      *Node // signature
    Top        int   // top context (ctxCallee, etc)
    Closure    *Node // OCLOSURE <-> ODCLFUNC
    Nname      *Node

    Inl *Inline

    Label int32 // largest auto-generated label in this function

    Endlineno src.XPos
    WBPos     src.XPos // position of first write barrier; see SetWBPos

    Pragma PragmaFlag // go:xxx function annotations
    // contains filtered or unexported fields

Func holds Node fields used only with function-like nodes.

func (*Func) Dupok Uses

func (f *Func) Dupok() bool

func (*Func) ExportInline Uses

func (f *Func) ExportInline() bool

func (*Func) HasDefer Uses

func (f *Func) HasDefer() bool

func (*Func) InlinabilityChecked Uses

func (f *Func) InlinabilityChecked() bool

func (*Func) InstrumentBody Uses

func (f *Func) InstrumentBody() bool

func (*Func) IsHiddenClosure Uses

func (f *Func) IsHiddenClosure() bool

func (*Func) Needctxt Uses

func (f *Func) Needctxt() bool

func (*Func) NilCheckDisabled Uses

func (f *Func) NilCheckDisabled() bool

func (*Func) OpenCodedDeferDisallowed Uses

func (f *Func) OpenCodedDeferDisallowed() bool

func (*Func) ReflectMethod Uses

func (f *Func) ReflectMethod() bool

func (*Func) SetDupok Uses

func (f *Func) SetDupok(b bool)

func (*Func) SetExportInline Uses

func (f *Func) SetExportInline(b bool)

func (*Func) SetHasDefer Uses

func (f *Func) SetHasDefer(b bool)

func (*Func) SetInlinabilityChecked Uses

func (f *Func) SetInlinabilityChecked(b bool)

func (*Func) SetInstrumentBody Uses

func (f *Func) SetInstrumentBody(b bool)

func (*Func) SetIsHiddenClosure Uses

func (f *Func) SetIsHiddenClosure(b bool)

func (*Func) SetNeedctxt Uses

func (f *Func) SetNeedctxt(b bool)

func (*Func) SetNilCheckDisabled Uses

func (f *Func) SetNilCheckDisabled(b bool)

func (*Func) SetOpenCodedDeferDisallowed Uses

func (f *Func) SetOpenCodedDeferDisallowed(b bool)

func (*Func) SetReflectMethod Uses

func (f *Func) SetReflectMethod(b bool)

func (*Func) SetWrapper Uses

func (f *Func) SetWrapper(b bool)

func (*Func) Wrapper Uses

func (f *Func) Wrapper() bool

type GCProg Uses

type GCProg struct {
    // contains filtered or unexported fields

type IndexJump Uses

type IndexJump struct {
    Jump  obj.As
    Index int

For generating consecutive jump instructions to model a specific branching

type InitEntry Uses

type InitEntry struct {
    Xoffset int64 // struct, array only
    Expr    *Node // bytes of run-time computed expressions

type InitOrder Uses

type InitOrder struct {
    // contains filtered or unexported fields

type InitPlan Uses

type InitPlan struct {
    E []InitEntry

type InitSchedule Uses

type InitSchedule struct {
    // contains filtered or unexported fields

An InitSchedule is used to decompose assignment statements into static and dynamic initialization parts. Static initializations are handled by populating variables' linker symbol data, while dynamic initializations are accumulated to be executed in order.

type Inline Uses

type Inline struct {
    Cost int32 // heuristic cost of inlining this function

    // Copies of Func.Dcl and Nbody for use during inlining.
    Dcl  []*Node
    Body []*Node

An Inline holds fields used for function bodies that can be inlined.

type Liveness Uses

type Liveness struct {
    // contains filtered or unexported fields

A collection of global state used by liveness analysis.

type LivenessIndex Uses

type LivenessIndex struct {
    // contains filtered or unexported fields

LivenessIndex stores the liveness map information for a Value.

func (LivenessIndex) RegMapValid Uses

func (idx LivenessIndex) RegMapValid() bool

func (LivenessIndex) StackMapValid Uses

func (idx LivenessIndex) StackMapValid() bool

type LivenessMap Uses

type LivenessMap struct {
    // contains filtered or unexported fields

LivenessMap maps from *ssa.Value to LivenessIndex.

func (LivenessMap) Get Uses

func (m LivenessMap) Get(v *ssa.Value) LivenessIndex

type Mark Uses

type Mark struct {
    // Pos is the position of the token that marks the scope
    // change.
    Pos src.XPos

    // Scope identifies the innermost scope to the right of Pos.
    Scope ScopeID

A Mark represents a scope boundary.

type Mpcplx Uses

type Mpcplx struct {
    Real Mpflt
    Imag Mpflt

Mpcplx represents a complex constant.

func (*Mpcplx) Div Uses

func (v *Mpcplx) Div(rv *Mpcplx) bool

complex divide v /= rv

(a, b) / (c, d) = ((a*c + b*d), (b*c - a*d))/(c*c + d*d)

func (*Mpcplx) GoString Uses

func (v *Mpcplx) GoString() string

func (*Mpcplx) Mul Uses

func (v *Mpcplx) Mul(rv *Mpcplx)

complex multiply v *= rv

(a, b) * (c, d) = (a*c - b*d, b*c + a*d)

func (*Mpcplx) String Uses

func (v *Mpcplx) String() string

type Mpflt Uses

type Mpflt struct {
    Val big.Float

Mpflt represents a floating-point constant.

func (*Mpflt) Add Uses

func (a *Mpflt) Add(b *Mpflt)

func (*Mpflt) AddFloat64 Uses

func (a *Mpflt) AddFloat64(c float64)

func (*Mpflt) Cmp Uses

func (a *Mpflt) Cmp(b *Mpflt) int

func (*Mpflt) CmpFloat64 Uses

func (a *Mpflt) CmpFloat64(c float64) int

func (*Mpflt) Float32 Uses

func (a *Mpflt) Float32() float64

func (*Mpflt) Float64 Uses

func (a *Mpflt) Float64() float64

func (*Mpflt) GoString Uses

func (fvp *Mpflt) GoString() string

func (*Mpflt) Mul Uses

func (a *Mpflt) Mul(b *Mpflt)

func (*Mpflt) MulFloat64 Uses

func (a *Mpflt) MulFloat64(c float64)

func (*Mpflt) Neg Uses

func (a *Mpflt) Neg()

func (*Mpflt) Quo Uses

func (a *Mpflt) Quo(b *Mpflt)

func (*Mpflt) Set Uses

func (a *Mpflt) Set(b *Mpflt)

func (*Mpflt) SetFloat64 Uses

func (a *Mpflt) SetFloat64(c float64)

func (*Mpflt) SetInt Uses

func (a *Mpflt) SetInt(b *Mpint)

func (*Mpflt) SetString Uses

func (a *Mpflt) SetString(as string)

func (*Mpflt) String Uses

func (f *Mpflt) String() string

func (*Mpflt) Sub Uses

func (a *Mpflt) Sub(b *Mpflt)

type Mpint Uses

type Mpint struct {
    Val  big.Int
    Ovf  bool // set if Val overflowed compiler limit (sticky)
    Rune bool // set if syntax indicates default type rune

Mpint represents an integer constant.

func (*Mpint) Add Uses

func (a *Mpint) Add(b *Mpint)

func (*Mpint) And Uses

func (a *Mpint) And(b *Mpint)

func (*Mpint) AndNot Uses

func (a *Mpint) AndNot(b *Mpint)

func (*Mpint) Cmp Uses

func (a *Mpint) Cmp(b *Mpint) int

func (*Mpint) CmpInt64 Uses

func (a *Mpint) CmpInt64(c int64) int

func (*Mpint) GoString Uses

func (a *Mpint) GoString() string

func (*Mpint) Int64 Uses

func (a *Mpint) Int64() int64

func (*Mpint) Lsh Uses

func (a *Mpint) Lsh(b *Mpint)

func (*Mpint) Mul Uses

func (a *Mpint) Mul(b *Mpint)

func (*Mpint) Neg Uses

func (a *Mpint) Neg()

func (*Mpint) Or Uses

func (a *Mpint) Or(b *Mpint)

func (*Mpint) Quo Uses

func (a *Mpint) Quo(b *Mpint)

func (*Mpint) Rem Uses

func (a *Mpint) Rem(b *Mpint)

func (*Mpint) Rsh Uses

func (a *Mpint) Rsh(b *Mpint)

func (*Mpint) Set Uses

func (a *Mpint) Set(b *Mpint)

func (*Mpint) SetFloat Uses

func (a *Mpint) SetFloat(b *Mpflt) bool

func (*Mpint) SetInt64 Uses

func (a *Mpint) SetInt64(c int64)

func (*Mpint) SetOverflow Uses

func (a *Mpint) SetOverflow()

func (*Mpint) SetString Uses

func (a *Mpint) SetString(as string)

func (*Mpint) String Uses

func (a *Mpint) String() string

func (*Mpint) Sub Uses

func (a *Mpint) Sub(b *Mpint)

func (*Mpint) Xor Uses

func (a *Mpint) Xor(b *Mpint)

type Name Uses

type Name struct {
    Pack      *Node      // real package for import . names
    Pkg       *types.Pkg // pkg for OPACK nodes
    Defn      *Node      // initializing assignment
    Curfn     *Node      // function for local variables
    Param     *Param     // additional fields for ONAME, OTYPE
    Decldepth int32      // declaration loop depth, increased for every loop or label
    Vargen    int32      // unique name for ONAME within a function.  Function outputs are numbered starting at one.
    // contains filtered or unexported fields

Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).

func (*Name) Addrtaken Uses

func (n *Name) Addrtaken() bool

func (*Name) Assigned Uses

func (n *Name) Assigned() bool

func (*Name) AutoTemp Uses

func (n *Name) AutoTemp() bool

func (*Name) Byval Uses

func (n *Name) Byval() bool

func (*Name) Captured Uses

func (n *Name) Captured() bool

func (*Name) InlFormal Uses

func (n *Name) InlFormal() bool

func (*Name) InlLocal Uses

func (n *Name) InlLocal() bool

func (*Name) IsClosureVar Uses

func (n *Name) IsClosureVar() bool

func (*Name) IsOutputParamHeapAddr Uses

func (n *Name) IsOutputParamHeapAddr() bool

func (*Name) Keepalive Uses

func (n *Name) Keepalive() bool

func (*Name) LibfuzzerExtraCounter Uses

func (n *Name) LibfuzzerExtraCounter() bool

func (*Name) Needzero Uses

func (n *Name) Needzero() bool

func (*Name) OpenDeferSlot Uses

func (n *Name) OpenDeferSlot() bool

func (*Name) Readonly Uses

func (n *Name) Readonly() bool

func (*Name) SetAddrtaken Uses

func (n *Name) SetAddrtaken(b bool)

func (*Name) SetAssigned Uses

func (n *Name) SetAssigned(b bool)

func (*Name) SetAutoTemp Uses

func (n *Name) SetAutoTemp(b bool)

func (*Name) SetByval Uses

func (n *Name) SetByval(b bool)

func (*Name) SetCaptured Uses

func (n *Name) SetCaptured(b bool)

func (*Name) SetInlFormal Uses

func (n *Name) SetInlFormal(b bool)

func (*Name) SetInlLocal Uses

func (n *Name) SetInlLocal(b bool)

func (*Name) SetIsClosureVar Uses

func (n *Name) SetIsClosureVar(b bool)

func (*Name) SetIsOutputParamHeapAddr Uses

func (n *Name) SetIsOutputParamHeapAddr(b bool)

func (*Name) SetKeepalive Uses

func (n *Name) SetKeepalive(b bool)

func (*Name) SetLibfuzzerExtraCounter Uses

func (n *Name) SetLibfuzzerExtraCounter(b bool)

func (*Name) SetNeedzero Uses

func (n *Name) SetNeedzero(b bool)

func (*Name) SetOpenDeferSlot Uses

func (n *Name) SetOpenDeferSlot(b bool)

func (*Name) SetReadonly Uses

func (n *Name) SetReadonly(b bool)

func (*Name) SetUsed Uses

func (n *Name) SetUsed(b bool)

func (*Name) Used Uses

func (n *Name) Used() bool

type NilVal Uses

type NilVal struct{}

type Node Uses

type Node struct {
    // Tree structure.
    // Generic recursive walks should follow these fields.
    Left  *Node
    Right *Node
    Ninit Nodes
    Nbody Nodes
    List  Nodes
    Rlist Nodes

    // most nodes
    Type *types.Type
    Orig *Node // original form, for printing, and tracking copies of ONAMEs

    // func
    Func *Func

    Name *Name

    Sym *types.Sym  // various
    E   interface{} // Opt or Val, see methods below

    // Various. Usually an offset into a struct. For example:
    // - ONAME nodes that refer to local variables use it to identify their stack frame position.
    // - ODOT, ODOTPTR, and ORESULT use it to indicate offset relative to their base address.
    // - OSTRUCTKEY uses it to store the named field's offset.
    // - Named OLITERALs use it to store their ambient iota value.
    // - OINLMARK stores an index into the inlTree data structure.
    // - OCLOSURE uses it to store ambient iota value, if any.
    // Possibly still more uses. If you find any, document them.
    Xoffset int64

    Pos src.XPos

    Esc uint16 // EscXXX

    Op  Op
    // contains filtered or unexported fields

A Node is a single node in the syntax tree. Actually the syntax tree is a syntax DAG, because there is only one node with Op=ONAME for a given instance of a variable x. The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.

var Curfn *Node

func AutoVar Uses

func AutoVar(v *ssa.Value) (*Node, int64)

AutoVar returns a *Node and int64 representing the auto variable and offset within it where v should be spilled.

func (*Node) Bool Uses

func (n *Node) Bool() bool

Bool returns n as a bool. n must be a boolean constant.

func (*Node) Bounded Uses

func (n *Node) Bounded() bool

func (*Node) CanBeAnSSASym Uses

func (n *Node) CanBeAnSSASym()

The compiler needs *Node to be assignable to cmd/compile/internal/ssa.Sym.

func (*Node) CanInt64 Uses

func (n *Node) CanInt64() bool

CanInt64 reports whether it is safe to call Int64() on n.

func (*Node) Class Uses

func (n *Node) Class() Class

func (*Node) Colas Uses

func (n *Node) Colas() bool

func (*Node) Diag Uses

func (n *Node) Diag() bool

func (*Node) Embedded Uses

func (n *Node) Embedded() bool

func (*Node) Format Uses

func (n *Node) Format(s fmt.State, verb rune)

func (*Node) HasBreak Uses

func (n *Node) HasBreak() bool

func (*Node) HasCall Uses

func (n *Node) HasCall() bool

func (*Node) HasOpt Uses

func (n *Node) HasOpt() bool

func (*Node) HasVal Uses

func (n *Node) HasVal() bool

func (*Node) Implicit Uses

func (n *Node) Implicit() bool

func (*Node) IndexMapLValue Uses

func (n *Node) IndexMapLValue() bool

func (*Node) Initorder Uses

func (n *Node) Initorder() uint8

func (*Node) Int64 Uses

func (n *Node) Int64() int64

Int64 returns n as an int64. n must be an integer or rune constant.

func (*Node) Iota Uses

func (n *Node) Iota() int64

func (*Node) IsAutoTmp Uses

func (n *Node) IsAutoTmp() bool

IsAutoTmp indicates if n was created by the compiler as a temporary, based on the setting of the .AutoTemp flag in n's Name.

func (*Node) IsDDD Uses

func (n *Node) IsDDD() bool

func (*Node) IsMethod Uses

func (n *Node) IsMethod() bool

IsMethod reports whether n is a method. n must be a function or a method.

func (*Node) IsSynthetic Uses

func (n *Node) IsSynthetic() bool

func (*Node) Likely Uses

func (n *Node) Likely() bool

func (*Node) Line Uses

func (n *Node) Line() string

Line returns n's position as a string. If n has been inlined, it uses the outermost position where n has been inlined.

func (*Node) MarkNonNil Uses

func (n *Node) MarkNonNil()

MarkNonNil marks a pointer n as being guaranteed non-nil, on all code paths, at all times. During conversion to SSA, non-nil pointers won't have nil checks inserted before dereferencing. See state.exprPtr.

func (*Node) MarkReadonly Uses

func (n *Node) MarkReadonly()

MarkReadonly indicates that n is an ONAME with readonly contents.

func (*Node) NoInline Uses

func (n *Node) NoInline() bool

func (*Node) NonNil Uses

func (n *Node) NonNil() bool

func (*Node) Opt Uses

func (n *Node) Opt() interface{}

Opt returns the optimizer data for the node.

func (*Node) ResetAux Uses

func (n *Node) ResetAux()

func (*Node) SetBounded Uses

func (n *Node) SetBounded(b bool)

SetBounded indicates whether operation n does not need safety checks. When n is an index or slice operation, n does not need bounds checks. When n is a dereferencing operation, n does not need nil checks. When n is a makeslice+copy operation, n does not need length and cap checks.

func (*Node) SetClass Uses

func (n *Node) SetClass(b Class)

func (*Node) SetColas Uses

func (n *Node) SetColas(b bool)

func (*Node) SetDiag Uses

func (n *Node) SetDiag(b bool)

func (*Node) SetEmbedded Uses

func (n *Node) SetEmbedded(b bool)

func (*Node) SetHasBreak Uses

func (n *Node) SetHasBreak(b bool)

func (*Node) SetHasCall Uses

func (n *Node) SetHasCall(b bool)

func (*Node) SetHasOpt Uses

func (n *Node) SetHasOpt(b bool)

func (*Node) SetHasVal Uses

func (n *Node) SetHasVal(b bool)

func (*Node) SetImplicit Uses

func (n *Node) SetImplicit(b bool)

func (*Node) SetIndexMapLValue Uses

func (n *Node) SetIndexMapLValue(b bool)

func (*Node) SetInitorder Uses

func (n *Node) SetInitorder(b uint8)

func (*Node) SetIota Uses

func (n *Node) SetIota(x int64)

func (*Node) SetIsDDD Uses

func (n *Node) SetIsDDD(b bool)

func (*Node) SetLikely Uses

func (n *Node) SetLikely(b bool)

func (*Node) SetNoInline Uses

func (n *Node) SetNoInline(b bool)

func (*Node) SetOpt Uses

func (n *Node) SetOpt(x interface{})

SetOpt sets the optimizer data for the node, which must not have been used with SetVal. SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.

func (*Node) SetSliceBounds Uses

func (n *Node) SetSliceBounds(low, high, max *Node)

SetSliceBounds sets n's slice bounds, where n is a slice expression. n must be a slice expression. If max is non-nil, n must be a full slice expression.

func (*Node) SetSubOp Uses

func (n *Node) SetSubOp(op Op)

func (*Node) SetTChanDir Uses

func (n *Node) SetTChanDir(dir types.ChanDir)

func (*Node) SetTransient Uses

func (n *Node) SetTransient(b bool)

func (*Node) SetTypecheck Uses

func (n *Node) SetTypecheck(b uint8)

func (*Node) SetVal Uses

func (n *Node) SetVal(v Val)

SetVal sets the Val for the node, which must not have been used with SetOpt.

func (*Node) SetWalkdef Uses

func (n *Node) SetWalkdef(b uint8)

func (*Node) SliceBounds Uses

func (n *Node) SliceBounds() (low, high, max *Node)

SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max]. n must be a slice expression. max is nil if n is a simple slice expression.

func (*Node) StorageClass Uses

func (n *Node) StorageClass() ssa.StorageClass

func (*Node) String Uses

func (n *Node) String() string

func (*Node) SubOp Uses

func (n *Node) SubOp() Op

func (*Node) TChanDir Uses

func (n *Node) TChanDir() types.ChanDir

func (*Node) Transient Uses

func (n *Node) Transient() bool

func (*Node) Typ Uses

func (n *Node) Typ() *types.Type

func (*Node) Typecheck Uses

func (n *Node) Typecheck() uint8

func (*Node) Val Uses

func (n *Node) Val() Val

Val returns the Val for the node.

func (*Node) Walkdef Uses

func (n *Node) Walkdef() uint8

type NodeSet Uses

type NodeSet map[*Node]struct{}

NodeSet is a set of Nodes.

func (*NodeSet) Add Uses

func (s *NodeSet) Add(n *Node)

Add adds n to s.

func (NodeSet) Has Uses

func (s NodeSet) Has(n *Node) bool

Has reports whether s contains n.

func (NodeSet) Sorted Uses

func (s NodeSet) Sorted(less func(*Node, *Node) bool) []*Node

Sorted returns s sorted according to less.

type Nodes Uses

type Nodes struct {
    // contains filtered or unexported fields

Nodes is a pointer to a slice of *Node. For fields that are not used in most nodes, this is used instead of a slice to save space.

func (Nodes) Addr Uses

func (n Nodes) Addr(i int) **Node

Addr returns the address of the i'th element of Nodes. It panics if n does not have at least i+1 elements.

func (*Nodes) Append Uses

func (n *Nodes) Append(a ...*Node)

Append appends entries to Nodes.

func (*Nodes) AppendNodes Uses

func (n *Nodes) AppendNodes(n2 *Nodes)

AppendNodes appends the contents of *n2 to n, then clears n2.

func (Nodes) First Uses

func (n Nodes) First() *Node

First returns the first element of Nodes (same as n.Index(0)). It panics if n has no elements.

func (Nodes) Format Uses

func (n Nodes) Format(s fmt.State, verb rune)

func (Nodes) Index Uses

func (n Nodes) Index(i int) *Node

Index returns the i'th element of Nodes. It panics if n does not have at least i+1 elements.

func (Nodes) Len Uses

func (n Nodes) Len() int

Len returns the number of entries in Nodes.

func (*Nodes) MoveNodes Uses

func (n *Nodes) MoveNodes(n2 *Nodes)

MoveNodes sets n to the contents of n2, then clears n2.

func (*Nodes) Prepend Uses

func (n *Nodes) Prepend(a ...*Node)

Prepend prepends entries to Nodes. If a slice is passed in, this will take ownership of it.

func (Nodes) Second Uses

func (n Nodes) Second() *Node

Second returns the second element of Nodes (same as n.Index(1)). It panics if n has fewer than two elements.

func (*Nodes) Set Uses

func (n *Nodes) Set(s []*Node)

Set sets n to a slice. This takes ownership of the slice.

func (*Nodes) Set1 Uses

func (n *Nodes) Set1(n1 *Node)

Set1 sets n to a slice containing a single node.

func (*Nodes) Set2 Uses

func (n *Nodes) Set2(n1, n2 *Node)

Set2 sets n to a slice containing two nodes.

func (*Nodes) Set3 Uses

func (n *Nodes) Set3(n1, n2, n3 *Node)

Set3 sets n to a slice containing three nodes.

func (Nodes) SetFirst Uses

func (n Nodes) SetFirst(node *Node)

SetFirst sets the first element of Nodes to node. It panics if n does not have at least one elements.

func (Nodes) SetIndex Uses

func (n Nodes) SetIndex(i int, node *Node)

SetIndex sets the i'th element of Nodes to node. It panics if n does not have at least i+1 elements.

func (Nodes) SetSecond Uses

func (n Nodes) SetSecond(node *Node)

SetSecond sets the second element of Nodes to node. It panics if n does not have at least two elements.

func (Nodes) Slice Uses

func (n Nodes) Slice() []*Node

Slice returns the entries in Nodes as a slice. Changes to the slice entries (as in s[i] = n) will be reflected in the Nodes.

func (Nodes) String Uses

func (n Nodes) String() string

type Op Uses

type Op uint8
const (
    OXXX Op  = iota

    // names
    ONAME    // var or func name
    ONONAME  // unnamed arg or return value: f(int, string) (int, error) { etc }
    OTYPE    // type name
    OPACK    // import
    OLITERAL // literal

    // expressions
    OADD          // Left + Right
    OSUB          // Left - Right
    OOR           // Left | Right
    OXOR          // Left ^ Right
    OADDSTR       // +{List} (string addition, list elements are strings)
    OADDR         // &Left
    OANDAND       // Left && Right
    OAPPEND       // append(List); after walk, Left may contain elem type descriptor
    OBYTES2STR    // Type(Left) (Type is string, Left is a []byte)
    OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
    ORUNES2STR    // Type(Left) (Type is string, Left is a []rune)
    OSTR2BYTES    // Type(Left) (Type is []byte, Left is a string)
    OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
    OSTR2RUNES    // Type(Left) (Type is []rune, Left is a string)
    OAS           // Left = Right or (if Colas=true) Left := Right
    OAS2          // List = Rlist (x, y, z = a, b, c)
    OAS2DOTTYPE   // List = Right (x, ok = I.(int))
    OAS2FUNC      // List = Right (x, y = f())
    OAS2MAPR      // List = Right (x, ok = m["foo"])
    OAS2RECV      // List = Right (x, ok = <-c)
    OASOP         // Left Etype= Right (x += y)
    OCALL         // Left(List) (function call, method call or type conversion)

    // OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
    // Prior to walk, they are: Left(List), where List is all regular arguments.
    // After walk, List is a series of assignments to temporaries,
    // and Rlist is an updated set of arguments.
    // TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
    OCALLFUNC  // Left(List/Rlist) (function call f(args))
    OCALLMETH  // Left(List/Rlist) (direct method call x.Method(args))
    OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
    OCALLPART  // Left.Right (method expression x.Method, not called)
    OCAP       // cap(Left)
    OCLOSE     // close(Left)
    OCLOSURE   // func Type { Body } (func literal)
    OCOMPLIT   // Right{List} (composite literal, not yet lowered to specific form)
    OMAPLIT    // Type{List} (composite literal, Type is map)
    OSTRUCTLIT // Type{List} (composite literal, Type is struct)
    OARRAYLIT  // Type{List} (composite literal, Type is array)
    OSLICELIT  // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
    OPTRLIT    // &Left (left is composite literal)
    OCONV      // Type(Left) (type conversion)
    OCONVIFACE // Type(Left) (type conversion, to interface)
    OCONVNOP   // Type(Left) (type conversion, no effect)
    OCOPY      // copy(Left, Right)
    ODCL       // var Left (declares Left of type Left.Type)

    // Used during parsing but don't last.
    ODCLFUNC  // func f() or func (r) f()
    ODCLFIELD // struct field, interface field, or func/method argument/return value.
    ODCLCONST // const pi = 3.14
    ODCLTYPE  // type Int int or type Int = int

    ODELETE        // delete(Left, Right)
    ODOT           // Left.Sym (Left is of struct type)
    ODOTPTR        // Left.Sym (Left is of pointer to struct type)
    ODOTMETH       // Left.Sym (Left is non-interface, Right is method name)
    ODOTINTER      // Left.Sym (Left is interface, Right is method name)
    OXDOT          // Left.Sym (before rewrite to one of the preceding)
    ODOTTYPE       // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
    ODOTTYPE2      // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
    OEQ            // Left == Right
    ONE            // Left != Right
    OLT            // Left < Right
    OLE            // Left <= Right
    OGE            // Left >= Right
    OGT            // Left > Right
    ODEREF         // *Left
    OINDEX         // Left[Right] (index of array or slice)
    OINDEXMAP      // Left[Right] (index of map)
    OKEY           // Left:Right (key:value in struct/array/map literal)
    OSTRUCTKEY     // Sym:Left (key:value in struct literal, after type checking)
    OLEN           // len(Left)
    OMAKE          // make(List) (before type checking converts to one of the following)
    OMAKECHAN      // make(Type, Left) (type is chan)
    OMAKEMAP       // make(Type, Left) (type is map)
    OMAKESLICE     // make(Type, Left, Right) (type is slice)
    OMAKESLICECOPY // makeslicecopy(Type, Left, Right) (type is slice; Left is length and Right is the copied from slice)
    // OMAKESLICECOPY is created by the order pass and corresponds to:
    //  s = make(Type, Left); copy(s, Right)
    // Bounded can be set on the node when Left == len(Right) is known at compile time.
    // This node is created so the walk pass can optimize this pattern which would
    // otherwise be hard to detect after the order pass.
    OMUL         // Left * Right
    ODIV         // Left / Right
    OMOD         // Left % Right
    OLSH         // Left << Right
    ORSH         // Left >> Right
    OAND         // Left & Right
    OANDNOT      // Left &^ Right
    ONEW         // new(Left); corresponds to calls to new in source code
    ONEWOBJ      // runtime.newobject(n.Type); introduced by walk; Left is type descriptor
    ONOT         // !Left
    OBITNOT      // ^Left
    OPLUS        // +Left
    ONEG         // -Left
    OOROR        // Left || Right
    OPANIC       // panic(Left)
    OPRINT       // print(List)
    OPRINTN      // println(List)
    OPAREN       // (Left)
    OSEND        // Left <- Right
    OSLICE       // Left[List[0] : List[1]] (Left is untypechecked or slice)
    OSLICEARR    // Left[List[0] : List[1]] (Left is array)
    OSLICESTR    // Left[List[0] : List[1]] (Left is string)
    OSLICE3      // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
    OSLICE3ARR   // Left[List[0] : List[1] : List[2]] (Left is array)
    OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
    ORECOVER     // recover()
    ORECV        // <-Left
    ORUNESTR     // Type(Left) (Type is string, Left is rune)
    OSELRECV     // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
    OSELRECV2    // List = <-Right.Left: (appears as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
    OIOTA        // iota
    OREAL        // real(Left)
    OIMAG        // imag(Left)
    OCOMPLEX     // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
    OALIGNOF     // unsafe.Alignof(Left)
    OOFFSETOF    // unsafe.Offsetof(Left)
    OSIZEOF      // unsafe.Sizeof(Left)

    // statements
    OBLOCK    // { List } (block of code)
    OBREAK    // break [Sym]
    OCASE     // case List: Nbody (List==nil means default)
    OCONTINUE // continue [Sym]
    ODEFER    // defer Left (Left must be call)
    OEMPTY    // no-op (empty statement)
    OFALL     // fallthrough
    OFOR      // for Ninit; Left; Right { Nbody }
    // OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
    // 	Ninit
    // 	top: { Nbody }   // Execute the body at least once
    // 	cont: Right
    // 	if Left {        // And then test the loop condition
    // 		List     // Before looping to top, execute List
    // 		goto top
    // 	}
    // OFORUNTIL is created by walk. There's no way to write this in Go code.
    OGOTO   // goto Sym
    OIF     // if Ninit; Left { Nbody } else { Rlist }
    OLABEL  // Sym:
    OGO     // go Left (Left must be call)
    ORANGE  // for List = range Right { Nbody }
    ORETURN // return List
    OSELECT // select { List } (List is list of OCASE)
    OSWITCH // switch Ninit; Left { List } (List is a list of OCASE)
    OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH)

    // types
    OTCHAN   // chan int
    OTMAP    // map[string]int
    OTSTRUCT // struct{}
    OTINTER  // interface{}
    OTFUNC   // func()
    OTARRAY  // []int, [8]int, [N]int or [...]int

    // misc
    ODDD        // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
    OINLCALL    // intermediary representation of an inlined call.
    OEFACE      // itable and data words of an empty-interface value.
    OITAB       // itable word of an interface value.
    OIDATA      // data word of an interface value in Left
    OSPTR       // base pointer of a slice or string.
    OCLOSUREVAR // variable reference at beginning of closure function
    OCFUNC      // reference to c function pointer (not go func value)
    OCHECKNIL   // emit code to ensure pointer/interface not nil
    OVARDEF     // variable is about to be fully initialized
    OVARKILL    // variable is dead
    OVARLIVE    // variable is alive
    ORESULT     // result of a function call; Xoffset is stack offset
    OINLMARK    // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.

    // arch-specific opcodes
    ORETJMP // return to other function
    OGETG   // runtime.getg() (read g pointer)


Node ops.

func (Op) Format Uses

func (o Op) Format(s fmt.State, verb rune)

func (Op) GoString Uses

func (o Op) GoString() string

func (Op) IsSlice3 Uses

func (o Op) IsSlice3() bool

IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR). o must be a slicing op.

func (Op) String Uses

func (i Op) String() string

type Order Uses

type Order struct {
    // contains filtered or unexported fields

Order holds state during the ordering process.

type Param Uses

type Param struct {
    Ntype    *Node
    Heapaddr *Node // temp holding heap address of param

    Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)

    // ONAME closure linkage
    // Consider:
    //	func f() {
    //		x := 1 // x1
    //		func() {
    //			use(x) // x2
    //			func() {
    //				use(x) // x3
    //				--- parser is here ---
    //			}()
    //		}()
    //	}
    // There is an original declaration of x and then a chain of mentions of x
    // leading into the current function. Each time x is mentioned in a new closure,
    // we create a variable representing x for use in that specific closure,
    // since the way you get to x is different in each closure.
    // Let's number the specific variables as shown in the code:
    // x1 is the original x, x2 is when mentioned in the closure,
    // and x3 is when mentioned in the closure in the closure.
    // We keep these linked (assume N > 1):
    //   - x1.Defn = original declaration statement for x (like most variables)
    //   - x1.Innermost = current innermost closure x (in this case x3), or nil for none
    //   - x1.IsClosureVar() = false
    //   - xN.Defn = x1, N > 1
    //   - xN.IsClosureVar() = true, N > 1
    //   - x2.Outer = nil
    //   - xN.Outer = x(N-1), N > 2
    // When we look up x in the symbol table, we always get x1.
    // Then we can use x1.Innermost (if not nil) to get the x
    // for the innermost known closure function,
    // but the first reference in a closure will find either no x1.Innermost
    // or an x1.Innermost with .Funcdepth < Funcdepth.
    // In that case, a new xN must be created, linked in with:
    //     xN.Defn = x1
    //     xN.Outer = x1.Innermost
    //     x1.Innermost = xN
    // When we finish the function, we'll process its closure variables
    // and find xN and pop it off the list using:
    //     x1 := xN.Defn
    //     x1.Innermost = xN.Outer
    // We leave xN.Innermost set so that we can still get to the original
    // variable quickly. Not shown here, but once we're
    // done parsing a function and no longer need xN.Outer for the
    // lexical x reference links as described above, closurebody
    // recomputes xN.Outer as the semantic x reference link tree,
    // even filling in x in intermediate closures that might not
    // have mentioned it along the way to inner closures that did.
    // See closurebody for details.
    // During the eventual compilation, then, for closure variables we have:
    //     xN.Defn = original variable
    //     xN.Outer = variable captured in next outward scope
    //                to make closure where xN appears
    // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
    // and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
    Innermost *Node
    Outer     *Node

    // OTYPE
    // TODO: Should Func pragmas also be stored on the Name?
    Pragma PragmaFlag
    Alias  bool // node is alias for Ntype (only used when type-checking ODCLTYPE)

type Pragma Uses

type Pragma struct {
    Flag PragmaFlag  // collected bits
    Pos  []PragmaPos // position of each individual flag

*Pragma is the value stored in a syntax.Pragma during parsing.

type PragmaFlag Uses

type PragmaFlag int16
const (
    // Func pragmas.
    Nointerface    PragmaFlag = 1 << iota
    Noescape                  // func parameters don't escape
    Norace                    // func must not have race detector annotations
    Nosplit                   // func should not execute on separate stack
    Noinline                  // func should not be inlined
    NoCheckPtr                // func should not be instrumented by checkptr
    CgoUnsafeArgs             // treat a pointer to one arg as a pointer to them all
    UintptrEscapes            // pointers converted to uintptr escape

    // Runtime-only func pragmas.
    // See ../../../../runtime/README.md for detailed descriptions.
    Systemstack        // func must run on system stack
    Nowritebarrier     // emit compiler error instead of write barrier
    Nowritebarrierrec  // error on write barrier in this or recursive callees
    Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees

    // Runtime-only type pragmas
    NotInHeap // values of this type must not be heap allocated

type PragmaPos Uses

type PragmaPos struct {
    Flag PragmaFlag
    Pos  syntax.Pos

type Progs Uses

type Progs struct {
    Text *obj.Prog // ATEXT Prog for this function
    // contains filtered or unexported fields

Progs accumulates Progs for a function and converts them into machine code.

func (*Progs) Appendpp Uses

func (pp *Progs) Appendpp(p *obj.Prog, as obj.As, ftype obj.AddrType, freg int16, foffset int64, ttype obj.AddrType, treg int16, toffset int64) *obj.Prog

func (*Progs) Flush Uses

func (pp *Progs) Flush()

Flush converts from pp to machine code.

func (*Progs) Free Uses

func (pp *Progs) Free()

Free clears pp and any associated resources.

func (*Progs) NewProg Uses

func (pp *Progs) NewProg() *obj.Prog

func (*Progs) Prog Uses

func (pp *Progs) Prog(as obj.As) *obj.Prog

Prog adds a Prog with instruction As to pp.

type SSAGenState Uses

type SSAGenState struct {

    // Branches remembers all the branch instructions we've seen
    // and where they would like to go.
    Branches []Branch

    // 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
    SSEto387 map[int16]int16
    // Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
    ScratchFpMem *Node

    // wasm: The number of values on the WebAssembly stack. This is only used as a safeguard.
    OnWasmStackSkipped int
    // contains filtered or unexported fields

SSAGenState contains state needed during Prog generation.

func (*SSAGenState) AddrScratch Uses

func (s *SSAGenState) AddrScratch(a *obj.Addr)

func (*SSAGenState) Br Uses

func (s *SSAGenState) Br(op obj.As, target *ssa.Block) *obj.Prog

Br emits a single branch instruction and returns the instruction. Not all architectures need the returned instruction, but otherwise the boilerplate is common to all.

func (*SSAGenState) Call Uses

func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog

Call returns a new CALL instruction for the SSA value v. It uses PrepareCall to prepare the call.

func (*SSAGenState) CombJump Uses

func (s *SSAGenState) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump)

CombJump generates combinational instructions (2 at present) for a block jump, thereby the behaviour of non-standard condition codes could be simulated

func (*SSAGenState) DebugFriendlySetPosFrom Uses

func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value)

DebugFriendlySetPosFrom adjusts Pos.IsStmt subject to heuristics that reduce "jumpy" line number churn when debugging. Spill/fill/copy instructions from the register allocator, phi functions, and instructions with a no-pos position are examples of instructions that can cause churn.

func (*SSAGenState) Pc Uses

func (s *SSAGenState) Pc() *obj.Prog

Pc returns the current Prog.

func (*SSAGenState) PrepareCall Uses

func (s *SSAGenState) PrepareCall(v *ssa.Value)

PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping. It must be called immediately before emitting the actual CALL instruction, since it emits PCDATA for the stack map at the call (calls are safe points).

func (*SSAGenState) Prog Uses

func (s *SSAGenState) Prog(as obj.As) *obj.Prog

Prog appends a new Prog.

func (*SSAGenState) SetPos Uses

func (s *SSAGenState) SetPos(pos src.XPos)

SetPos sets the current source position.

func (*SSAGenState) UseArgs Uses

func (s *SSAGenState) UseArgs(n int64)

UseArgs records the fact that an instruction needs a certain amount of callee args space for its use.

type ScopeID Uses

type ScopeID int32

A ScopeID represents a lexical scope within a function.

type Sig Uses

type Sig struct {
    // contains filtered or unexported fields
type Symlink struct {
    // contains filtered or unexported fields

type Timings Uses

type Timings struct {
    // contains filtered or unexported fields

Timings collects the execution times of labeled phases which are added trough a sequence of Start/Stop calls. Events may be associated with each phase via AddEvent.

func (*Timings) AddEvent Uses

func (t *Timings) AddEvent(size int64, unit string)

AddEvent associates an event, i.e., a count, or an amount of data, with the most recently started or stopped phase; or the very first phase if Start or Stop hasn't been called yet. The unit specifies the unit of measurement (e.g., MB, lines, no. of funcs, etc.).

func (*Timings) Start Uses

func (t *Timings) Start(labels ...string)

Start marks the beginning of a new phase and implicitly stops the previous phase. The phase name is the colon-separated concatenation of the labels.

func (*Timings) Stop Uses

func (t *Timings) Stop(labels ...string)

Stop marks the end of a phase and implicitly starts a new phase. The labels are added to the labels of the ended phase.

func (*Timings) Write Uses

func (t *Timings) Write(w io.Writer, prefix string)

Write prints the phase times to w. The prefix is printed at the start of each line.

type Val Uses

type Val struct {
    // U contains one of:
    // bool     bool when Ctype() == CTBOOL
    // *Mpint   int when Ctype() == CTINT, rune when Ctype() == CTRUNE
    // *Mpflt   float when Ctype() == CTFLT
    // *Mpcplx  pair of floats when Ctype() == CTCPLX
    // string   string when Ctype() == CTSTR
    // *Nilval  when Ctype() == CTNIL
    U interface{}

func (Val) Ctype Uses

func (v Val) Ctype() Ctype

func (Val) Format Uses

func (v Val) Format(s fmt.State, verb rune)

func (Val) Interface Uses

func (v Val) Interface() interface{}

Interface returns the constant value stored in v as an interface{}. It returns int64s for ints and runes, float64s for floats, complex128s for complex values, and nil for constant nils.

Package gc imports 50 packages (graph) and is imported by 23 packages. Updated 2020-10-16. Refresh now. Tools for package owners.

The go get command cannot install this package because of the following issues: