import "cuelang.org/go/pkg/math"
big.go manual.go math.go pkg.go
const ( MaxExp = 2147483647 // largest supported exponent MinExp = -2147483648 // smallest supported exponent MaxPrec = 4294967295 // largest (theoretically) supported precision; likely memory-limited )
Exponent and precision limits.
const ( ToNearestEven = 0 // == IEEE 754-2008 roundTiesToEven ToNearestAway = 1 // == IEEE 754-2008 roundTiesToAway ToZero = 2 // == IEEE 754-2008 roundTowardZero AwayFromZero = 3 // no IEEE 754-2008 equivalent ToNegativeInf = 4 // == IEEE 754-2008 roundTowardNegative ToPositiveInf = 5 // == IEEE 754-2008 roundTowardPositive )
These constants define supported rounding modes.
const ( Below = -1 Exact = 0 Above = 1 )
Constants describing the Accuracy of a Float.
const ( E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113 Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796 Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622 Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193 SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774 SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161 SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339 Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162 Log2E = 1000000000000000000000000000000000000000000000000000000000000000 / 693147180559945309417232121458176568075500134360255254120680009 Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392 Log10E = 10000000000000000000000000000000000000000000000000000000000000 / 23025850929940456840179914546843642076011014886287729760333279 )
Mathematical constants.
const MaxBase = 62
MaxBase is the largest number base accepted for string conversions.
Abs returns the absolute value of x.
Special case: Abs(±Inf) = +Inf
Acos returns the arccosine, in radians, of x.
Special case is:
Acos(x) = NaN if x < -1 or x > 1
Acosh returns the inverse hyperbolic cosine of x.
Special cases are:
Acosh(+Inf) = +Inf Acosh(x) = NaN if x < 1 Acosh(NaN) = NaN
Asin returns the arcsine, in radians, of x.
Special cases are:
Asin(±0) = ±0 Asin(x) = NaN if x < -1 or x > 1
Asinh returns the inverse hyperbolic sine of x.
Special cases are:
Asinh(±0) = ±0 Asinh(±Inf) = ±Inf Asinh(NaN) = NaN
Atan returns the arctangent, in radians, of x.
Special cases are:
Atan(±0) = ±0 Atan(±Inf) = ±Pi/2
Atan2 returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value.
Special cases are (in order):
Atan2(y, NaN) = NaN Atan2(NaN, x) = NaN Atan2(+0, x>=0) = +0 Atan2(-0, x>=0) = -0 Atan2(+0, x<=-0) = +Pi Atan2(-0, x<=-0) = -Pi Atan2(y>0, 0) = +Pi/2 Atan2(y<0, 0) = -Pi/2 Atan2(+Inf, +Inf) = +Pi/4 Atan2(-Inf, +Inf) = -Pi/4 Atan2(+Inf, -Inf) = 3Pi/4 Atan2(-Inf, -Inf) = -3Pi/4 Atan2(y, +Inf) = 0 Atan2(y>0, -Inf) = +Pi Atan2(y<0, -Inf) = -Pi Atan2(+Inf, x) = +Pi/2 Atan2(-Inf, x) = -Pi/2
Atanh returns the inverse hyperbolic tangent of x.
Special cases are:
Atanh(1) = +Inf Atanh(±0) = ±0 Atanh(-1) = -Inf Atanh(x) = NaN if x < -1 or x > 1 Atanh(NaN) = NaN
Cbrt returns the cube root of x.
Special cases are:
Cbrt(±0) = ±0 Cbrt(±Inf) = ±Inf Cbrt(NaN) = NaN
Ceil returns the least integer value greater than or equal to x.
Special cases are:
Ceil(±0) = ±0 Ceil(±Inf) = ±Inf Ceil(NaN) = NaN
Copysign returns a value with the magnitude of x and the sign of y.
Cos returns the cosine of the radian argument x.
Special cases are:
Cos(±Inf) = NaN Cos(NaN) = NaN
Cosh returns the hyperbolic cosine of x.
Special cases are:
Cosh(±0) = 1 Cosh(±Inf) = +Inf Cosh(NaN) = NaN
Dim returns the maximum of x-y or 0.
Special cases are:
Dim(+Inf, +Inf) = NaN Dim(-Inf, -Inf) = NaN Dim(x, NaN) = Dim(NaN, x) = NaN
Erf returns the error function of x.
Special cases are:
Erf(+Inf) = 1 Erf(-Inf) = -1 Erf(NaN) = NaN
Erfc returns the complementary error function of x.
Special cases are:
Erfc(+Inf) = 0 Erfc(-Inf) = 2 Erfc(NaN) = NaN
Erfcinv returns the inverse of Erfc(x).
Special cases are:
Erfcinv(0) = +Inf Erfcinv(2) = -Inf Erfcinv(x) = NaN if x < 0 or x > 2 Erfcinv(NaN) = NaN
Erfinv returns the inverse error function of x.
Special cases are:
Erfinv(1) = +Inf Erfinv(-1) = -Inf Erfinv(x) = NaN if x < -1 or x > 1 Erfinv(NaN) = NaN
Exp returns e**x, the base-e exponential of x.
Special cases are:
Exp(+Inf) = +Inf Exp(NaN) = NaN
Very large values overflow to 0 or +Inf. Very small values underflow to 1.
Exp2 returns 2**x, the base-2 exponential of x.
Special cases are the same as Exp.
Expm1 returns e**x - 1, the base-e exponential of x minus 1. It is more accurate than Exp(x) - 1 when x is near zero.
Special cases are:
Expm1(+Inf) = +Inf Expm1(-Inf) = -1 Expm1(NaN) = NaN
Very large values overflow to -1 or +Inf.
Floor returns the greatest integer value less than or equal to x.
Special cases are:
Floor(±0) = ±0 Floor(±Inf) = ±Inf Floor(NaN) = NaN
Gamma returns the Gamma function of x.
Special cases are:
Gamma(+Inf) = +Inf Gamma(+0) = +Inf Gamma(-0) = -Inf Gamma(x) = NaN for integer x < 0 Gamma(-Inf) = NaN Gamma(NaN) = NaN
Hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow.
Special cases are:
Hypot(±Inf, q) = +Inf Hypot(p, ±Inf) = +Inf Hypot(NaN, q) = NaN Hypot(p, NaN) = NaN
Ilogb returns the binary exponent of x as an integer.
Special cases are:
Ilogb(±Inf) = MaxInt32 Ilogb(0) = MinInt32 Ilogb(NaN) = MaxInt32
J0 returns the order-zero Bessel function of the first kind.
Special cases are:
J0(±Inf) = 0 J0(0) = 1 J0(NaN) = NaN
J1 returns the order-one Bessel function of the first kind.
Special cases are:
J1(±Inf) = 0 J1(NaN) = NaN
Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. The y argument must be an odd integer.
Jn returns the order-n Bessel function of the first kind.
Special cases are:
Jn(n, ±Inf) = 0 Jn(n, NaN) = NaN
Ldexp is the inverse of Frexp. It returns frac × 2**exp.
Special cases are:
Ldexp(±0, exp) = ±0 Ldexp(±Inf, exp) = ±Inf Ldexp(NaN, exp) = NaN
Log returns the natural logarithm of x.
Special cases are:
Log(+Inf) = +Inf Log(0) = -Inf Log(x < 0) = NaN Log(NaN) = NaN
Log10 returns the decimal logarithm of x. The special cases are the same as for Log.
Log1p returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero.
Special cases are:
Log1p(+Inf) = +Inf Log1p(±0) = ±0 Log1p(-1) = -Inf Log1p(x < -1) = NaN Log1p(NaN) = NaN
Log2 returns the binary logarithm of x. The special cases are the same as for Log.
Logb returns the binary exponent of x.
Special cases are:
Logb(±Inf) = +Inf Logb(0) = -Inf Logb(NaN) = NaN
Mod returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x.
Special cases are:
Mod(±Inf, y) = NaN Mod(NaN, y) = NaN Mod(x, 0) = NaN Mod(x, ±Inf) = x Mod(x, NaN) = NaN
MultipleOf reports whether x is a multiple of y.
Pow returns x**y, the base-x exponential of y.
Special cases are (in order):
Pow(x, ±0) = 1 for any x Pow(1, y) = 1 for any y Pow(x, 1) = x for any x Pow(NaN, y) = NaN Pow(x, NaN) = NaN Pow(±0, y) = ±Inf for y an odd integer < 0 Pow(±0, -Inf) = +Inf Pow(±0, +Inf) = +0 Pow(±0, y) = +Inf for finite y < 0 and not an odd integer Pow(±0, y) = ±0 for y an odd integer > 0 Pow(±0, y) = +0 for finite y > 0 and not an odd integer Pow(-1, ±Inf) = 1 Pow(x, +Inf) = +Inf for |x| > 1 Pow(x, -Inf) = +0 for |x| > 1 Pow(x, +Inf) = +0 for |x| < 1 Pow(x, -Inf) = +Inf for |x| < 1 Pow(+Inf, y) = +Inf for y > 0 Pow(+Inf, y) = +0 for y < 0 Pow(-Inf, y) = Pow(-0, -y) Pow(x, y) = NaN for finite x < 0 and finite non-integer y
Pow10 returns 10**n, the base-10 exponential of n.
Remainder returns the IEEE 754 floating-point remainder of x/y.
Special cases are:
Remainder(±Inf, y) = NaN Remainder(NaN, y) = NaN Remainder(x, 0) = NaN Remainder(x, ±Inf) = x Remainder(x, NaN) = NaN
Round returns the nearest integer, rounding half away from zero.
Special cases are:
Round(±0) = ±0 Round(±Inf) = ±Inf Round(NaN) = NaN
RoundToEven returns the nearest integer, rounding ties to even.
Special cases are:
RoundToEven(±0) = ±0 RoundToEven(±Inf) = ±Inf RoundToEven(NaN) = NaN
Signbit reports whether x is negative or negative zero.
Sin returns the sine of the radian argument x.
Special cases are:
Sin(±0) = ±0 Sin(±Inf) = NaN Sin(NaN) = NaN
Sinh returns the hyperbolic sine of x.
Special cases are:
Sinh(±0) = ±0 Sinh(±Inf) = ±Inf Sinh(NaN) = NaN
Sqrt returns the square root of x.
Special cases are:
Sqrt(+Inf) = +Inf Sqrt(±0) = ±0 Sqrt(x < 0) = NaN Sqrt(NaN) = NaN
Tan returns the tangent of the radian argument x.
Special cases are:
Tan(±0) = ±0 Tan(±Inf) = NaN Tan(NaN) = NaN
Tanh returns the hyperbolic tangent of x.
Special cases are:
Tanh(±0) = ±0 Tanh(±Inf) = ±1 Tanh(NaN) = NaN
Trunc returns the integer value of x.
Special cases are:
Trunc(±0) = ±0 Trunc(±Inf) = ±Inf Trunc(NaN) = NaN
Y0 returns the order-zero Bessel function of the second kind.
Special cases are:
Y0(+Inf) = 0 Y0(0) = -Inf Y0(x < 0) = NaN Y0(NaN) = NaN
Y1 returns the order-one Bessel function of the second kind.
Special cases are:
Y1(+Inf) = 0 Y1(0) = -Inf Y1(x < 0) = NaN Y1(NaN) = NaN
Yn returns the order-n Bessel function of the second kind.
Special cases are:
Yn(n, +Inf) = 0 Yn(n ≥ 0, 0) = -Inf Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even Yn(n, x < 0) = NaN Yn(n, NaN) = NaN
Path | Synopsis |
---|---|
bits |
Package math imports 6 packages (graph) and is imported by 2 packages. Updated 2021-01-25. Refresh now. Tools for package owners.