tableschema-go: github.com/frictionlessdata/tableschema-go/schema Index | Examples | Files

package schema

import "github.com/frictionlessdata/tableschema-go/schema"

Index

Examples

Package Files

any.go array.go boolean.go date.go datetime.go duration.go field.go geopoint.go infer.go integer.go number.go object.go schema.go string.go time.go

Constants

const (
    IntegerType   = "integer"
    StringType    = "string"
    BooleanType   = "boolean"
    NumberType    = "number"
    DateType      = "date"
    ObjectType    = "object"
    ArrayType     = "array"
    DateTimeType  = "datetime"
    TimeType      = "time"
    YearMonthType = "yearmonth"
    YearType      = "year"
    DurationType  = "duration"
    GeoPointType  = "geopoint"
    AnyType       = "any"
)

Field types.

const (
    GeoPointArrayFormat  = "array"
    GeoPointObjectFormat = "object"
)

Formats specific to GeoPoint field type.

const (
    AnyDateFormat = "any"
)

Formats.

const InvalidPosition = -1

InvalidPosition is returned by GetField call when it refers to a field that does not exist in the schema.

type Constraints Uses

type Constraints struct {
    // Required indicates whether this field is allowed to be null.
    // Schema.MissingValues define how the string representation can
    // represent null values.
    Required bool `json:"required,omitempty"`

    // Unique indicates whether this field is allowed to have duplicates.
    // This constrain is only relevant for Schema.CastTable
    Unique bool `json:"unique,omitempty"`

    Maximum   string `json:"maximum,omitempty"`
    Minimum   string `json:"minimum,omitempty"`
    MinLength int    `json:"minLength,omitempty"`
    MaxLength int    `json:"maxLength,omitempty"`
    Pattern   string `json:"pattern,omitempty"`

    // Enum indicates that the value of the field must exactly match a value in the enum array.
    // The values of the fields could need encoding, depending on the type.
    // It applies to all field types.
    Enum []interface{} `json:"enum,omitempty"`
    // contains filtered or unexported fields
}

Constraints can be used by consumers to list constraints for validating field values.

type Field Uses

type Field struct {
    // Name of the field. It is mandatory and shuold correspond to the name of field/column in the data file (if it has a name).
    Name   string `json:"name"`
    Type   string `json:"type,omitempty"`
    Format string `json:"format,omitempty"`
    // A human readable label or title for the field.
    Title string `json:"title,omitempty"`
    // A description for this field e.g. "The recipient of the funds"
    Description string `json:"description,omitempty"`

    // Boolean properties. Define set of the values that represent true and false, respectively.
    // https://specs.frictionlessdata.io/table-schema/#boolean
    TrueValues  []string `json:"trueValues,omitempty"`
    FalseValues []string `json:"falseValues,omitempty"`

    // A string whose value is used to represent a decimal point within the number. The default value is ".".
    DecimalChar string `json:"decimalChar,omitempty"`
    // A string whose value is used to group digits within the number. The default value is null. A common value is "," e.g. "100,000".
    GroupChar string `json:"groupChar,omitempty"`
    // If true the physical contents of this field must follow the formatting constraints already set out.
    // If false the contents of this field may contain leading and/or trailing non-numeric characters which
    // are going to be stripped. Default value is true:
    BareNumber bool `json:"bareNumber,omitempty"`

    // MissingValues is a map which dictates which string values should be treated as null
    // values.
    MissingValues map[string]struct{} `json:"-"`

    // Constraints can be used by consumers to list constraints for validating
    // field values.
    Constraints Constraints
}

Field describes a single field in the table schema. More: https://specs.frictionlessdata.io/table-schema/#field-descriptors

func (*Field) Cast Uses

func (f *Field) Cast(value string) (interface{}, error)

Cast casts the passed-in string against field type. Returns an error if the value can not be cast or any field constraint can not be satisfied.

Code:

in := `{
		"name": "id",
		"type": "string",
		"format": "default",
		"constraints": {
			"required": true,
			"minLen": "5",
			"maxLen": "10",
			"pattern": ".*11$",
			"enum":["1234511"]
		}
	}`
var field Field
json.Unmarshal([]byte(in), &field)
v, err := field.Cast("1234511")
if err != nil {
    panic(err)
}
fmt.Println(v)

Output:

1234511

func (*Field) TestString Uses

func (f *Field) TestString(value string) bool

TestString checks whether the value can be unmarshalled to the field type.

func (*Field) Uncast Uses

func (f *Field) Uncast(in interface{}) (string, error)

Uncast uncasts the passed-in value into a string. It returns an error if the the type of the passed-in value can not be converted to field type.

func (*Field) UnmarshalJSON Uses

func (f *Field) UnmarshalJSON(data []byte) error

UnmarshalJSON sets *f to a copy of data. It will respect the default values described at: https://specs.frictionlessdata.io/table-schema/

type Fields Uses

type Fields []Field

Fields represents a list of schema fields.

func (Fields) Len Uses

func (f Fields) Len() int

func (Fields) Less Uses

func (f Fields) Less(i, j int) bool

func (Fields) Swap Uses

func (f Fields) Swap(i, j int)

type ForeignKeyReference Uses

type ForeignKeyReference struct {
    Resource          string      `json:"resource,omitempty"`
    Fields            []string    `json:"-"`
    FieldsPlaceholder interface{} `json:"fields,omitempty"`
}

ForeignKeyReference represents the field reference by a foreign key.

type ForeignKeys Uses

type ForeignKeys struct {
    Fields            []string            `json:"-"`
    FieldsPlaceholder interface{}         `json:"fields,omitempty"`
    Reference         ForeignKeyReference `json:"reference,omitempty"`
}

ForeignKeys defines a schema foreign key

type GeoPoint Uses

type GeoPoint struct {
    Lon float64 `json:"lon,omitempty"`
    Lat float64 `json:"lat,omitempty"`
}

GeoPoint represents a "geopoint" cell. More at: https://specs.frictionlessdata.io/table-schema/#geopoint

func (*GeoPoint) UnmarshalJSON Uses

func (p *GeoPoint) UnmarshalJSON(data []byte) error

UnmarshalJSON sets *f to a copy of data. It will respect the default values

type Schema Uses

type Schema struct {
    Fields                Fields      `json:"fields,omitempty"`
    PrimaryKeyPlaceholder interface{} `json:"primaryKey,omitempty"`
    PrimaryKeys           []string    `json:"-"`
    ForeignKeys           ForeignKeys `json:"foreignKeys,omitempty"`
    MissingValues         []string    `json:"missingValues,omitempty"`
}

Schema describes tabular data.

func Infer Uses

func Infer(tab table.Table) (*Schema, error)

Infer infers a schema from a slice of the tabular data. For columns that contain cells that can inferred as different types, the most popular type is set as the field type. For instance, a column with values 10.1, 10, 10 will inferred as being of type "integer".

func InferImplicitCasting Uses

func InferImplicitCasting(tab table.Table) (*Schema, error)

InferImplicitCasting uses a implicit casting for infering the type of columns that have cells of diference types. For instance, a column with values 10.1, 10, 10 will inferred as being of type "number" ("integer" can be implicitly cast to "number").

For medium to big tables, this method is faster than the Infer.

Code:

tab := table.FromSlices(
    []string{"Person", "Height"},
    [][]string{
        []string{"Foo", "5"},
        []string{"Bar", "4"},
        []string{"Bez", "5.5"},
    })
s, _ := InferImplicitCasting(tab)
fmt.Println("Fields:")
for _, f := range s.Fields {
    fmt.Printf("{Name:%s Type:%s Format:%s}\n", f.Name, f.Type, f.Format)
}

Output:

Fields:
{Name:Person Type:string Format:default}
{Name:Height Type:number Format:default}

func LoadFromFile Uses

func LoadFromFile(path string) (*Schema, error)

LoadFromFile loads and parses a schema descriptor from a local file.

func LoadRemote Uses

func LoadRemote(url string) (*Schema, error)

LoadRemote downloads and parses a schema descriptor from the specified URL.

func Read Uses

func Read(r io.Reader) (*Schema, error)

Read reads and parses a descriptor to create a schema.

Example - Reading a schema from a file:

f, err := os.Open("foo/bar/schema.json")
if err != nil {
  panic(err)
}
s, err := Read(f)
if err != nil {
  panic(err)
}
fmt.Println(s)

func (*Schema) CastRow Uses

func (s *Schema) CastRow(row []string, out interface{}) error

CastRow casts the passed-in row to schema types and stores it in the value pointed by out. The out value must be pointer to a struct. Only exported fields will be unmarshalled. The lowercased field name is used as the key for each exported field.

If a value in the row cannot be marshalled to its respective schema field (Field.Unmarshal), this call will return an error. Furthermore, this call is also going to return an error if the schema field value can not be unmarshalled to the struct field type.

Code:

// Lets assume we have a schema ...
s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType}}}

// And a Table.
t := table.FromSlices([]string{"Name", "Age"}, [][]string{
    {"Foo", "42"},
    {"Bar", "43"}})

// And we would like to process them using Go types. First we need to create a struct to
// hold the content of each row.
// The tag tableheader maps the field to the schema. If no tag is set the name of the field
// has to be the same like inside the schema.
type person struct {
    MyName string `tableheader:"Name"`
    Age    int
}

// Now it is a matter of iterate over the table and Cast each row.
iter, _ := t.Iter()
for iter.Next() {
    var p person
    s.CastRow(iter.Row(), &p)
    fmt.Printf("%+v\n", p)
}

Output:

{MyName:Foo Age:42}
{MyName:Bar Age:43}

func (*Schema) CastTable Uses

func (s *Schema) CastTable(tab table.Table, out interface{}) error

CastTable loads and casts all table rows.

The result argument must necessarily be the address for a slice. The slice may be nil or previously allocated.

Code:

// Lets assume we have a schema ...
s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType, Constraints: Constraints{Unique: true}}}}

// And a Table.
t := table.FromSlices([]string{"Name", "Age"}, [][]string{
    {"Foo", "42"},
    {"Bar", "43"}})

// And we would like to process them using Go types. First we need to create a struct to
// hold the content of each row.
// The tag tableheader maps the field to the schema. If no tag is set the name of the field
// has to be the same like inside the schema.
type person struct {
    MyName string `tableheader:"Name"`
    Age    int
}
var people []person
s.CastTable(t, &people)
fmt.Print(people)

Output:

[{Foo 42} {Bar 43}]

func (*Schema) GetField Uses

func (s *Schema) GetField(name string) (*Field, int)

GetField fetches the index and field referenced by the name argument.

func (*Schema) HasField Uses

func (s *Schema) HasField(name string) bool

HasField returns checks whether the schema has a field with the passed-in.

func (*Schema) MarshalJSON Uses

func (s *Schema) MarshalJSON() ([]byte, error)

MarshalJSON returns the JSON encoding of s.

func (*Schema) SaveToFile Uses

func (s *Schema) SaveToFile(path string) error

SaveToFile writes the schema descriptor in local file.

func (*Schema) String Uses

func (s *Schema) String() string

String returns an human readable version of the schema.

func (*Schema) UncastRow Uses

func (s *Schema) UncastRow(in interface{}) ([]string, error)

UncastRow uncasts struct into a row. This method can only uncast structs (or pointer to structs) and will error out if nil is passed. The order of the cells in the returned row is the schema declaration order.

Code:

// Lets assume we have a schema.
s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType}}}

// And would like to create a CSV out of this list. The tag tableheader maps
// the field to the schema name. If no tag is set the name of the field
// has to be the same like inside the schema.
people := []struct {
    MyName string `tableheader:"Name"`
    Age    int
}{{"Foo", 42}, {"Bar", 43}}

// First create the writer and write the header.
w := table.NewStringWriter()
w.Write([]string{"Name", "Age"})

// Then write the list
for _, person := range people {
    row, _ := s.UncastRow(person)
    w.Write(row)
}
w.Flush()
fmt.Print(w.String())

Output:

Name,Age
Foo,42
Bar,43

func (*Schema) UncastTable Uses

func (s *Schema) UncastTable(in interface{}) ([][]string, error)

UncastTable uncasts each element (struct) of the passed-in slice and

Code:

// Lets assume we have a schema.
s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType}}}

// And would like to create a CSV out of this list. The tag tableheader maps
// the field to the schema name. If no tag is set the name of the field
// has to be the same like inside the schema.
people := []struct {
    MyName string `tableheader:"Name"`
    Age    int
}{{"Foo", 42}, {"Bar", 43}}

// Then uncast the people slice into a slice of rows.
rows, _ := s.UncastTable(people)

// Now, simply write it down.
w := table.NewStringWriter()
w.Write([]string{"Name", "Age"})
w.WriteAll(rows)
w.Flush()
fmt.Print(w.String())

Output:

Name,Age
Foo,42
Bar,43

func (*Schema) UnmarshalJSON Uses

func (s *Schema) UnmarshalJSON(data []byte) error

UnmarshalJSON sets *f to a copy of data. It will respect the default values described at: https://specs.frictionlessdata.io/table-schema/

func (*Schema) Validate Uses

func (s *Schema) Validate() error

Validate checks whether the schema is valid. If it is not, returns an error describing the problem. More at: https://specs.frictionlessdata.io/table-schema/

func (*Schema) Write Uses

func (s *Schema) Write(w io.Writer) error

Write writes the schema descriptor.

Package schema imports 17 packages (graph) and is imported by 1 packages. Updated 2018-01-16. Refresh now. Tools for package owners.