import "sort"
Package sort provides primitives for sorting slices and user-defined collections.
Code:play
package main
import (
"fmt"
"sort"
)
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%s: %d", p.Name, p.Age)
}
// ByAge implements sort.Interface for []Person based on
// the Age field.
type ByAge []Person
func (a ByAge) Len() int { return len(a) }
func (a ByAge) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByAge) Less(i, j int) bool { return a[i].Age < a[j].Age }
func main() {
people := []Person{
{"Bob", 31},
{"John", 42},
{"Michael", 17},
{"Jenny", 26},
}
fmt.Println(people)
// There are two ways to sort a slice. First, one can define
// a set of methods for the slice type, as with ByAge, and
// call sort.Sort. In this first example we use that technique.
sort.Sort(ByAge(people))
fmt.Println(people)
// The other way is to use sort.Slice with a custom Less
// function, which can be provided as a closure. In this
// case no methods are needed. (And if they exist, they
// are ignored.) Here we re-sort in reverse order: compare
// the closure with ByAge.Less.
sort.Slice(people, func(i, j int) bool {
return people[i].Age > people[j].Age
})
fmt.Println(people)
}
ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria.
Code:play
package main
import (
"fmt"
"sort"
)
// A couple of type definitions to make the units clear.
type earthMass float64
type au float64
// A Planet defines the properties of a solar system object.
type Planet struct {
name string
mass earthMass
distance au
}
// By is the type of a "less" function that defines the ordering of its Planet arguments.
type By func(p1, p2 *Planet) bool
// Sort is a method on the function type, By, that sorts the argument slice according to the function.
func (by By) Sort(planets []Planet) {
ps := &planetSorter{
planets: planets,
by: by, // The Sort method's receiver is the function (closure) that defines the sort order.
}
sort.Sort(ps)
}
// planetSorter joins a By function and a slice of Planets to be sorted.
type planetSorter struct {
planets []Planet
by func(p1, p2 *Planet) bool // Closure used in the Less method.
}
// Len is part of sort.Interface.
func (s *planetSorter) Len() int {
return len(s.planets)
}
// Swap is part of sort.Interface.
func (s *planetSorter) Swap(i, j int) {
s.planets[i], s.planets[j] = s.planets[j], s.planets[i]
}
// Less is part of sort.Interface. It is implemented by calling the "by" closure in the sorter.
func (s *planetSorter) Less(i, j int) bool {
return s.by(&s.planets[i], &s.planets[j])
}
var planets = []Planet{
{"Mercury", 0.055, 0.4},
{"Venus", 0.815, 0.7},
{"Earth", 1.0, 1.0},
{"Mars", 0.107, 1.5},
}
// ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria.
func main() {
// Closures that order the Planet structure.
name := func(p1, p2 *Planet) bool {
return p1.name < p2.name
}
mass := func(p1, p2 *Planet) bool {
return p1.mass < p2.mass
}
distance := func(p1, p2 *Planet) bool {
return p1.distance < p2.distance
}
decreasingDistance := func(p1, p2 *Planet) bool {
return distance(p2, p1)
}
// Sort the planets by the various criteria.
By(name).Sort(planets)
fmt.Println("By name:", planets)
By(mass).Sort(planets)
fmt.Println("By mass:", planets)
By(distance).Sort(planets)
fmt.Println("By distance:", planets)
By(decreasingDistance).Sort(planets)
fmt.Println("By decreasing distance:", planets)
}
ExampleMultiKeys demonstrates a technique for sorting a struct type using different sets of multiple fields in the comparison. We chain together "Less" functions, each of which compares a single field.
Code:play
package main
import (
"fmt"
"sort"
)
// A Change is a record of source code changes, recording user, language, and delta size.
type Change struct {
user string
language string
lines int
}
type lessFunc func(p1, p2 *Change) bool
// multiSorter implements the Sort interface, sorting the changes within.
type multiSorter struct {
changes []Change
less []lessFunc
}
// Sort sorts the argument slice according to the less functions passed to OrderedBy.
func (ms *multiSorter) Sort(changes []Change) {
ms.changes = changes
sort.Sort(ms)
}
// OrderedBy returns a Sorter that sorts using the less functions, in order.
// Call its Sort method to sort the data.
func OrderedBy(less ...lessFunc) *multiSorter {
return &multiSorter{
less: less,
}
}
// Len is part of sort.Interface.
func (ms *multiSorter) Len() int {
return len(ms.changes)
}
// Swap is part of sort.Interface.
func (ms *multiSorter) Swap(i, j int) {
ms.changes[i], ms.changes[j] = ms.changes[j], ms.changes[i]
}
// Less is part of sort.Interface. It is implemented by looping along the
// less functions until it finds a comparison that discriminates between
// the two items (one is less than the other). Note that it can call the
// less functions twice per call. We could change the functions to return
// -1, 0, 1 and reduce the number of calls for greater efficiency: an
// exercise for the reader.
func (ms *multiSorter) Less(i, j int) bool {
p, q := &ms.changes[i], &ms.changes[j]
// Try all but the last comparison.
var k int
for k = 0; k < len(ms.less)-1; k++ {
less := ms.less[k]
switch {
case less(p, q):
// p < q, so we have a decision.
return true
case less(q, p):
// p > q, so we have a decision.
return false
}
// p == q; try the next comparison.
}
// All comparisons to here said "equal", so just return whatever
// the final comparison reports.
return ms.less[k](p, q)
}
var changes = []Change{
{"gri", "Go", 100},
{"ken", "C", 150},
{"glenda", "Go", 200},
{"rsc", "Go", 200},
{"r", "Go", 100},
{"ken", "Go", 200},
{"dmr", "C", 100},
{"r", "C", 150},
{"gri", "Smalltalk", 80},
}
// ExampleMultiKeys demonstrates a technique for sorting a struct type using different
// sets of multiple fields in the comparison. We chain together "Less" functions, each of
// which compares a single field.
func main() {
// Closures that order the Change structure.
user := func(c1, c2 *Change) bool {
return c1.user < c2.user
}
language := func(c1, c2 *Change) bool {
return c1.language < c2.language
}
increasingLines := func(c1, c2 *Change) bool {
return c1.lines < c2.lines
}
decreasingLines := func(c1, c2 *Change) bool {
return c1.lines > c2.lines // Note: > orders downwards.
}
// Simple use: Sort by user.
OrderedBy(user).Sort(changes)
fmt.Println("By user:", changes)
// More examples.
OrderedBy(user, increasingLines).Sort(changes)
fmt.Println("By user,<lines:", changes)
OrderedBy(user, decreasingLines).Sort(changes)
fmt.Println("By user,>lines:", changes)
OrderedBy(language, increasingLines).Sort(changes)
fmt.Println("By language,<lines:", changes)
OrderedBy(language, increasingLines, user).Sort(changes)
fmt.Println("By language,<lines,user:", changes)
}
Code:play
package main
import (
"fmt"
"sort"
)
type Grams int
func (g Grams) String() string { return fmt.Sprintf("%dg", int(g)) }
type Organ struct {
Name string
Weight Grams
}
type Organs []*Organ
func (s Organs) Len() int { return len(s) }
func (s Organs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// ByName implements sort.Interface by providing Less and using the Len and
// Swap methods of the embedded Organs value.
type ByName struct{ Organs }
func (s ByName) Less(i, j int) bool { return s.Organs[i].Name < s.Organs[j].Name }
// ByWeight implements sort.Interface by providing Less and using the Len and
// Swap methods of the embedded Organs value.
type ByWeight struct{ Organs }
func (s ByWeight) Less(i, j int) bool { return s.Organs[i].Weight < s.Organs[j].Weight }
func main() {
s := []*Organ{
{"brain", 1340},
{"heart", 290},
{"liver", 1494},
{"pancreas", 131},
{"prostate", 62},
{"spleen", 162},
}
sort.Sort(ByWeight{s})
fmt.Println("Organs by weight:")
printOrgans(s)
sort.Sort(ByName{s})
fmt.Println("Organs by name:")
printOrgans(s)
}
func printOrgans(s []*Organ) {
for _, o := range s {
fmt.Printf("%-8s (%v)\n", o.Name, o.Weight)
}
}
search.go slice.go sort.go zfuncversion.go
Float64s sorts a slice of float64s in increasing order (not-a-number values are treated as less than other values).
Float64sAreSorted tests whether a slice of float64s is sorted in increasing order (not-a-number values are treated as less than other values).
Code:play
s := []float64{0.7, 1.3, 2.6, 3.8, 5.2} // sorted ascending
fmt.Println(sort.Float64sAreSorted(s))
s = []float64{5.2, 3.8, 2.6, 1.3, 0.7} // sorted descending
fmt.Println(sort.Float64sAreSorted(s))
s = []float64{5.2, 1.3, 0.7, 3.8, 2.6} // unsorted
fmt.Println(sort.Float64sAreSorted(s))
Output:
true false false
Ints sorts a slice of ints in increasing order.
IntsAreSorted tests whether a slice of ints is sorted in increasing order.
IsSorted reports whether data is sorted.
Search uses binary search to find and return the smallest index i in [0, n) at which f(i) is true, assuming that on the range [0, n), f(i) == true implies f(i+1) == true. That is, Search requires that f is false for some (possibly empty) prefix of the input range [0, n) and then true for the (possibly empty) remainder; Search returns the first true index. If there is no such index, Search returns n. (Note that the "not found" return value is not -1 as in, for instance, strings.Index.) Search calls f(i) only for i in the range [0, n).
A common use of Search is to find the index i for a value x in a sorted, indexable data structure such as an array or slice. In this case, the argument f, typically a closure, captures the value to be searched for, and how the data structure is indexed and ordered.
For instance, given a slice data sorted in ascending order, the call Search(len(data), func(i int) bool { return data[i] >= 23 }) returns the smallest index i such that data[i] >= 23. If the caller wants to find whether 23 is in the slice, it must test data[i] == 23 separately.
Searching data sorted in descending order would use the <= operator instead of the >= operator.
To complete the example above, the following code tries to find the value x in an integer slice data sorted in ascending order:
x := 23
i := sort.Search(len(data), func(i int) bool { return data[i] >= x })
if i < len(data) && data[i] == x {
// x is present at data[i]
} else {
// x is not present in data,
// but i is the index where it would be inserted.
}
As a more whimsical example, this program guesses your number:
func GuessingGame() {
var s string
fmt.Printf("Pick an integer from 0 to 100.\n")
answer := sort.Search(100, func(i int) bool {
fmt.Printf("Is your number <= %d? ", i)
fmt.Scanf("%s", &s)
return s != "" && s[0] == 'y'
})
fmt.Printf("Your number is %d.\n", answer)
}
This example demonstrates searching a list sorted in ascending order.
Code:play
a := []int{1, 3, 6, 10, 15, 21, 28, 36, 45, 55}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] >= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
Output:
found 6 at index 2 in [1 3 6 10 15 21 28 36 45 55]
This example demonstrates searching a list sorted in descending order. The approach is the same as searching a list in ascending order, but with the condition inverted.
Code:play
a := []int{55, 45, 36, 28, 21, 15, 10, 6, 3, 1}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] <= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
Output:
found 6 at index 7 in [55 45 36 28 21 15 10 6 3 1]
SearchFloat64s searches for x in a sorted slice of float64s and returns the index as specified by Search. The return value is the index to insert x if x is not present (it could be len(a)). The slice must be sorted in ascending order.
SearchInts searches for x in a sorted slice of ints and returns the index as specified by Search. The return value is the index to insert x if x is not present (it could be len(a)). The slice must be sorted in ascending order.
SearchStrings searches for x in a sorted slice of strings and returns the index as specified by Search. The return value is the index to insert x if x is not present (it could be len(a)). The slice must be sorted in ascending order.
Slice sorts the provided slice given the provided less function.
The sort is not guaranteed to be stable. For a stable sort, use SliceStable.
The function panics if the provided interface is not a slice.
Code:play
people := []struct {
Name string
Age int
}{
{"Gopher", 7},
{"Alice", 55},
{"Vera", 24},
{"Bob", 75},
}
sort.Slice(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
sort.Slice(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age:", people)
Output:
By name: [{Alice 55} {Bob 75} {Gopher 7} {Vera 24}]
By age: [{Gopher 7} {Vera 24} {Alice 55} {Bob 75}]
SliceIsSorted tests whether a slice is sorted.
The function panics if the provided interface is not a slice.
SliceStable sorts the provided slice given the provided less function while keeping the original order of equal elements.
The function panics if the provided interface is not a slice.
Code:play
people := []struct {
Name string
Age int
}{
{"Alice", 25},
{"Elizabeth", 75},
{"Alice", 75},
{"Bob", 75},
{"Alice", 75},
{"Bob", 25},
{"Colin", 25},
{"Elizabeth", 25},
}
// Sort by name, preserving original order
sort.SliceStable(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
// Sort by age preserving name order
sort.SliceStable(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age,name:", people)
Output:
By name: [{Alice 25} {Alice 75} {Alice 75} {Bob 75} {Bob 25} {Colin 25} {Elizabeth 75} {Elizabeth 25}]
By age,name: [{Alice 25} {Bob 25} {Colin 25} {Elizabeth 25} {Alice 75} {Alice 75} {Bob 75} {Elizabeth 75}]
Sort sorts data. It makes one call to data.Len to determine n, and O(n*log(n)) calls to data.Less and data.Swap. The sort is not guaranteed to be stable.
Stable sorts data while keeping the original order of equal elements.
It makes one call to data.Len to determine n, O(n*log(n)) calls to data.Less and O(n*log(n)*log(n)) calls to data.Swap.
Strings sorts a slice of strings in increasing order.
StringsAreSorted tests whether a slice of strings is sorted in increasing order.
Float64Slice attaches the methods of Interface to []float64, sorting in increasing order (not-a-number values are treated as less than other values).
func (p Float64Slice) Len() int
func (p Float64Slice) Less(i, j int) bool
func (p Float64Slice) Search(x float64) int
Search returns the result of applying SearchFloat64s to the receiver and x.
func (p Float64Slice) Sort()
Sort is a convenience method.
func (p Float64Slice) Swap(i, j int)
IntSlice attaches the methods of Interface to []int, sorting in increasing order.
Search returns the result of applying SearchInts to the receiver and x.
Sort is a convenience method.
type Interface interface {
// Len is the number of elements in the collection.
Len() int
// Less reports whether the element with
// index i should sort before the element with index j.
Less(i, j int) bool
// Swap swaps the elements with indexes i and j.
Swap(i, j int)
}A type, typically a collection, that satisfies sort.Interface can be sorted by the routines in this package. The methods require that the elements of the collection be enumerated by an integer index.
Reverse returns the reverse order for data.
StringSlice attaches the methods of Interface to []string, sorting in increasing order.
func (p StringSlice) Len() int
func (p StringSlice) Less(i, j int) bool
func (p StringSlice) Search(x string) int
Search returns the result of applying SearchStrings to the receiver and x.
func (p StringSlice) Sort()
Sort is a convenience method.
func (p StringSlice) Swap(i, j int)
Package sort imports 1 packages (graph) and is imported by 74174 packages. Updated 2018-10-03. Refresh now. Tools for package owners.