grpc: google.golang.org/grpc/balancer Index | Files | Directories

package balancer

import "google.golang.org/grpc/balancer"

Package balancer defines APIs for load balancing in gRPC. All APIs in this package are experimental.

Index

Package Files

balancer.go

Variables

var (
    // ErrNoSubConnAvailable indicates no SubConn is available for pick().
    // gRPC will block the RPC until a new picker is available via UpdateState().
    ErrNoSubConnAvailable = errors.New("no SubConn is available")
    // ErrTransientFailure indicates all SubConns are in TransientFailure.
    // WaitForReady RPCs will block, non-WaitForReady RPCs will fail.
    //
    // Deprecated: return an appropriate error based on the last resolution or
    // connection attempt instead.  The behavior is the same for any non-gRPC
    // status error.
    ErrTransientFailure = errors.New("all SubConns are in TransientFailure")
)
var ErrBadResolverState = errors.New("bad resolver state")

ErrBadResolverState may be returned by UpdateClientConnState to indicate a problem with the provided name resolver data.

func Register Uses

func Register(b Builder)

Register registers the balancer builder to the balancer map. b.Name (lowercased) will be used as the name registered with this builder. If the Builder implements ConfigParser, ParseConfig will be called when new service configs are received by the resolver, and the result will be provided to the Balancer in UpdateClientConnState.

NOTE: this function must only be called during initialization time (i.e. in an init() function), and is not thread-safe. If multiple Balancers are registered with the same name, the one registered last will take effect.

func TransientFailureError Uses

func TransientFailureError(e error) error

TransientFailureError returns e. It exists for backward compatibility and will be deleted soon.

Deprecated: no longer necessary, picker errors are treated this way by default.

type Balancer Uses

type Balancer interface {
    // UpdateClientConnState is called by gRPC when the state of the ClientConn
    // changes.  If the error returned is ErrBadResolverState, the ClientConn
    // will begin calling ResolveNow on the active name resolver with
    // exponential backoff until a subsequent call to UpdateClientConnState
    // returns a nil error.  Any other errors are currently ignored.
    UpdateClientConnState(ClientConnState) error
    // ResolverError is called by gRPC when the name resolver reports an error.
    ResolverError(error)
    // UpdateSubConnState is called by gRPC when the state of a SubConn
    // changes.
    UpdateSubConnState(SubConn, SubConnState)
    // Close closes the balancer. The balancer is not required to call
    // ClientConn.RemoveSubConn for its existing SubConns.
    Close()
}

Balancer takes input from gRPC, manages SubConns, and collects and aggregates the connectivity states.

It also generates and updates the Picker used by gRPC to pick SubConns for RPCs.

UpdateClientConnState, ResolverError, UpdateSubConnState, and Close are guaranteed to be called synchronously from the same goroutine. There's no guarantee on picker.Pick, it may be called anytime.

type BuildOptions Uses

type BuildOptions struct {
    // DialCreds is the transport credential the Balancer implementation can
    // use to dial to a remote load balancer server. The Balancer implementations
    // can ignore this if it does not need to talk to another party securely.
    DialCreds credentials.TransportCredentials
    // CredsBundle is the credentials bundle that the Balancer can use.
    CredsBundle credentials.Bundle
    // Dialer is the custom dialer the Balancer implementation can use to dial
    // to a remote load balancer server. The Balancer implementations
    // can ignore this if it doesn't need to talk to remote balancer.
    Dialer func(context.Context, string) (net.Conn, error)
    // ChannelzParentID is the entity parent's channelz unique identification number.
    ChannelzParentID int64
    // Target contains the parsed address info of the dial target. It is the same resolver.Target as
    // passed to the resolver.
    // See the documentation for the resolver.Target type for details about what it contains.
    Target resolver.Target
}

BuildOptions contains additional information for Build.

type Builder Uses

type Builder interface {
    // Build creates a new balancer with the ClientConn.
    Build(cc ClientConn, opts BuildOptions) Balancer
    // Name returns the name of balancers built by this builder.
    // It will be used to pick balancers (for example in service config).
    Name() string
}

Builder creates a balancer.

func Get Uses

func Get(name string) Builder

Get returns the resolver builder registered with the given name. Note that the compare is done in a case-insensitive fashion. If no builder is register with the name, nil will be returned.

type ClientConn Uses

type ClientConn interface {
    // NewSubConn is called by balancer to create a new SubConn.
    // It doesn't block and wait for the connections to be established.
    // Behaviors of the SubConn can be controlled by options.
    NewSubConn([]resolver.Address, NewSubConnOptions) (SubConn, error)
    // RemoveSubConn removes the SubConn from ClientConn.
    // The SubConn will be shutdown.
    RemoveSubConn(SubConn)

    // UpdateState notifies gRPC that the balancer's internal state has
    // changed.
    //
    // gRPC will update the connectivity state of the ClientConn, and will call
    // Pick on the new Picker to pick new SubConns.
    UpdateState(State)

    // ResolveNow is called by balancer to notify gRPC to do a name resolving.
    ResolveNow(resolver.ResolveNowOptions)

    // Target returns the dial target for this ClientConn.
    //
    // Deprecated: Use the Target field in the BuildOptions instead.
    Target() string
}

ClientConn represents a gRPC ClientConn.

This interface is to be implemented by gRPC. Users should not need a brand new implementation of this interface. For the situations like testing, the new implementation should embed this interface. This allows gRPC to add new methods to this interface.

type ClientConnState Uses

type ClientConnState struct {
    ResolverState resolver.State
    // The parsed load balancing configuration returned by the builder's
    // ParseConfig method, if implemented.
    BalancerConfig serviceconfig.LoadBalancingConfig
}

ClientConnState describes the state of a ClientConn relevant to the balancer.

type ConfigParser Uses

type ConfigParser interface {
    // ParseConfig parses the JSON load balancer config provided into an
    // internal form or returns an error if the config is invalid.  For future
    // compatibility reasons, unknown fields in the config should be ignored.
    ParseConfig(LoadBalancingConfigJSON json.RawMessage) (serviceconfig.LoadBalancingConfig, error)
}

ConfigParser parses load balancer configs.

type ConnectivityStateEvaluator Uses

type ConnectivityStateEvaluator struct {
    // contains filtered or unexported fields
}

ConnectivityStateEvaluator takes the connectivity states of multiple SubConns and returns one aggregated connectivity state.

It's not thread safe.

func (*ConnectivityStateEvaluator) RecordTransition Uses

func (cse *ConnectivityStateEvaluator) RecordTransition(oldState, newState connectivity.State) connectivity.State

RecordTransition records state change happening in subConn and based on that it evaluates what aggregated state should be.

- If at least one SubConn in Ready, the aggregated state is Ready;
- Else if at least one SubConn in Connecting, the aggregated state is Connecting;
- Else the aggregated state is TransientFailure.

Idle and Shutdown are not considered.

type DoneInfo Uses

type DoneInfo struct {
    // Err is the rpc error the RPC finished with. It could be nil.
    Err error
    // Trailer contains the metadata from the RPC's trailer, if present.
    Trailer metadata.MD
    // BytesSent indicates if any bytes have been sent to the server.
    BytesSent bool
    // BytesReceived indicates if any byte has been received from the server.
    BytesReceived bool
    // ServerLoad is the load received from server. It's usually sent as part of
    // trailing metadata.
    //
    // The only supported type now is *orca_v1.LoadReport.
    ServerLoad interface{}
}

DoneInfo contains additional information for done.

type NewSubConnOptions Uses

type NewSubConnOptions struct {
    // CredsBundle is the credentials bundle that will be used in the created
    // SubConn. If it's nil, the original creds from grpc DialOptions will be
    // used.
    //
    // Deprecated: Use the Attributes field in resolver.Address to pass
    // arbitrary data to the credential handshaker.
    CredsBundle credentials.Bundle
    // HealthCheckEnabled indicates whether health check service should be
    // enabled on this SubConn
    HealthCheckEnabled bool
}

NewSubConnOptions contains options to create new SubConn.

type PickInfo Uses

type PickInfo struct {
    // FullMethodName is the method name that NewClientStream() is called
    // with. The canonical format is /service/Method.
    FullMethodName string
    // Ctx is the RPC's context, and may contain relevant RPC-level information
    // like the outgoing header metadata.
    Ctx context.Context
}

PickInfo contains additional information for the Pick operation.

type PickResult Uses

type PickResult struct {
    // SubConn is the connection to use for this pick, if its state is Ready.
    // If the state is not Ready, gRPC will block the RPC until a new Picker is
    // provided by the balancer (using ClientConn.UpdateState).  The SubConn
    // must be one returned by ClientConn.NewSubConn.
    SubConn SubConn

    // Done is called when the RPC is completed.  If the SubConn is not ready,
    // this will be called with a nil parameter.  If the SubConn is not a valid
    // type, Done may not be called.  May be nil if the balancer does not wish
    // to be notified when the RPC completes.
    Done func(DoneInfo)
}

PickResult contains information related to a connection chosen for an RPC.

type Picker Uses

type Picker interface {
    // Pick returns the connection to use for this RPC and related information.
    //
    // Pick should not block.  If the balancer needs to do I/O or any blocking
    // or time-consuming work to service this call, it should return
    // ErrNoSubConnAvailable, and the Pick call will be repeated by gRPC when
    // the Picker is updated (using ClientConn.UpdateState).
    //
    // If an error is returned:
    //
    // - If the error is ErrNoSubConnAvailable, gRPC will block until a new
    //   Picker is provided by the balancer (using ClientConn.UpdateState).
    //
    // - If the error is a status error (implemented by the grpc/status
    //   package), gRPC will terminate the RPC with the code and message
    //   provided.
    //
    // - For all other errors, wait for ready RPCs will wait, but non-wait for
    //   ready RPCs will be terminated with this error's Error() string and
    //   status code Unavailable.
    Pick(info PickInfo) (PickResult, error)
}

Picker is used by gRPC to pick a SubConn to send an RPC. Balancer is expected to generate a new picker from its snapshot every time its internal state has changed.

The pickers used by gRPC can be updated by ClientConn.UpdateState().

type State Uses

type State struct {
    // State contains the connectivity state of the balancer, which is used to
    // determine the state of the ClientConn.
    ConnectivityState connectivity.State
    // Picker is used to choose connections (SubConns) for RPCs.
    Picker Picker
}

State contains the balancer's state relevant to the gRPC ClientConn.

type SubConn Uses

type SubConn interface {
    // UpdateAddresses updates the addresses used in this SubConn.
    // gRPC checks if currently-connected address is still in the new list.
    // If it's in the list, the connection will be kept.
    // If it's not in the list, the connection will gracefully closed, and
    // a new connection will be created.
    //
    // This will trigger a state transition for the SubConn.
    UpdateAddresses([]resolver.Address)
    // Connect starts the connecting for this SubConn.
    Connect()
}

SubConn represents a gRPC sub connection. Each sub connection contains a list of addresses. gRPC will try to connect to them (in sequence), and stop trying the remainder once one connection is successful.

The reconnect backoff will be applied on the list, not a single address. For example, try_on_all_addresses -> backoff -> try_on_all_addresses.

All SubConns start in IDLE, and will not try to connect. To trigger the connecting, Balancers must call Connect. When the connection encounters an error, it will reconnect immediately. When the connection becomes IDLE, it will not reconnect unless Connect is called.

This interface is to be implemented by gRPC. Users should not need a brand new implementation of this interface. For the situations like testing, the new implementation should embed this interface. This allows gRPC to add new methods to this interface.

type SubConnState Uses

type SubConnState struct {
    // ConnectivityState is the connectivity state of the SubConn.
    ConnectivityState connectivity.State
    // ConnectionError is set if the ConnectivityState is TransientFailure,
    // describing the reason the SubConn failed.  Otherwise, it is nil.
    ConnectionError error
}

SubConnState describes the state of a SubConn.

Directories

PathSynopsis
basePackage base defines a balancer base that can be used to build balancers with different picking algorithms.
grpclbPackage grpclb defines a grpclb balancer.
grpclb/grpc_lb_v1
grpclb/statePackage state declares grpclb types to be set by resolvers wishing to pass information to grpclb via resolver.State Attributes.
rls/internalPackage rls implements the RLS LB policy.
rls/internal/adaptivePackage adaptive provides functionality for adaptive client-side throttling.
rls/internal/cachePackage cache provides an LRU cache implementation to be used by the RLS LB policy to cache RLS response data.
rls/internal/keysPackage keys provides functionality required to build RLS request keys.
rls/internal/proto/grpc_lookup_v1
rls/internal/testutils/fakeserverPackage fakeserver provides a fake implementation of the RouteLookupService, to be used in unit tests.
roundrobinPackage roundrobin defines a roundrobin balancer.
weightedroundrobinPackage weightedroundrobin defines a weighted roundrobin balancer.

Package balancer imports 11 packages (graph) and is imported by 115 packages. Updated 2020-07-31. Refresh now. Tools for package owners.